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Many students experience great difficulty when studying topics related to fractions, 

especially division of fractions.  One explanation for this may be that learning how to divide 
fractions is often taught devoid of meaning.  The lack of sense making in carrying out algorithms 
without making connections to concrete or other types of representations contributes to the 
inability of students to use previously taught algorithms to solve new problems, especially after 
long periods of time have elapsed.  In this paper we explore the flexibility and durability of 
knowledge that students acquire when they study this topic in a way that encourages 
understanding. 

INTRODUCTION  
The difficulties that many students have experienced while solving problems involving 

fractions have been well documented (cf. Tzur, 1999; Davis, Hunting, and, Pearn, 1993; Davis, 
Alston, and Maher, 1991; Steffe, von Glasersfeld, Richards and Cobb, 1983; Steffe, Cobb and 
von Glasersfeld, 1988). It is therefore particularly important to find ways to help students 
overcome these difficulties. Fortunately, many researchers have also documented instances in 
which students have successfully been able to build ideas relating to fractions (c.f. Steencken, 
2001; Steencken and Maher, 2002; Ma, 1999; Cobb, Boufi, McClain and Whitenack, 1997, 
Kamii and Dominick, 1997). In particular, Bulgar (2002; 2003a; 2003b; Bulgar, Schorr & 
Maher, 2002) 1 reports on the conceptual development of ideas relating to division of fractions 
amongst fourth grade students participating in a teaching experiment.  Further, Bulgar reports 
that when this teaching experiment was replicated as part of the regular teaching practice in 
another classroom (her own), similar outcomes were achieved.    

In this paper we report on the latter group of students, with a particular focus on how they 
extended, modified, revised and ultimately generalized their ideas relating to division of fractions 
during the following school year.  This is done with a focus on mathematical flexibility, and the 
nature of the models that were used, and how they evolved during the following school year.  In 
particular, we focus on how students initially used continuous linear models, how these models 
evolved into discrete area models and how these students moved easily back to linear models 
when they found them to be more appropriate. 

THEORETICAL FRAMEWORK 
Our framework for analysis is based primarily upon a models and modeling perspective with 

a specific focus on the durability and flexibility of the models that are built over time.  Briefly 
stated (see Schorr & Koellner-Clark, 2003, for a more complete description) a model can be 
considered to be a way to describe, explain, construct or manipulate an experience, or a 
coordinated variety of experiences.  A person interprets a situation by mapping it into his or her 
own internal model, which helps him or her to make sense of the situation.  Once the situation 
has been interpreted into the internal model, transformations, modifications, extensions, or 
revisions within the model can occur, which in turn provide the means by which the person can 
make predictions, descriptions, or explanations, for use in the situation at hand. Models help us 



to organize relevant information and consider meaningful patterns that can be used to interpret or 
reinterpret hypotheses about given situations or events, generate explanations of how information 
is related, and make decisions about how and when to use selected cues and information. 

We wish to distinguish between the conceptual “models” that are embodied in the 
representational media that students use, and the “mental” models that reside inside the minds of 
learners (Lesh and Doerr, 2003) to which we refer above.  In this work, we will be attending to 
both, with an emphasis on the nature of the mental models that are born out in the 
representational media that the students use, especially as evidenced in their mathematical 
flexibility.  We document the nature of the models that the students have built in terms their 
“mathematical flexibility” not just during or shortly after the instruction took place, but rather 
over a more extended period of time.  We address flexible thought in the context that follows, 
and because it is relevant  to this study.    

Carey (1991) describes flexibility by saying "… children become more flexible in their 
choice of solution strategy as a result of changes in their conceptual knowledge, so that they can 
solve problems using a variety of strategies that do not model directly the action in the problem" 
(p. 267).  Heirdsfield (2002) notes that flexibility is the capacity of students to exhibit various 
invented strategies or a large repertoire of problem-solving strategies over time. She referred to 
the use of a single strategy consistently as inflexibility. Further, Gray and Tall (1994) describe 
flexible thinking in terms of an ability to move between interpreting notation as an instruction to 
do something (procedural use of notation) and as an object to think with and about (conceptual 
use of notation). Flexibility, as denoted in the work by Spiro & Jehng (1990) entails the ability to 
spontaneously restructure one’s knowledge, in adaptive response to changing situational 
demands.  Krutetskii (1969) characterizes flexible thinking as reversibility of thought—another 
much needed characteristic for students as they consider ideas related to fractions over time. 
Other researchers including Warner, Alcock, Coppolo & Davis (2003) and Warner and Schorr 
(in progress) emphasize that a critical aspect of mathematical flexibility is the ability of students 
to use multiple representations for the same idea, and to link, extend, and modify those 
representations to a broader range of situations, involving a broader range of models.  Since the 
goal of our instruction was not simply to have students retrieve facts or procedures, or to display 
understanding only for very specific situations and for limited time periods, we believe that 
mathematical flexibility is particularly relevant, as defined by all of the researchers above.  

Mathematical flexibility is particularly important if students are to use knowledge across a 
wide spectrum of ideas.  Fosnot and Dolk (2001) note, “The generalizing across problems, across 
models, and across operations is at the heart of models that are tools for thinking.” (p.81).  They 
report on a class in New York City wherein a third grade teacher provided students with three 
different contexts that lent themselves to different models but produced the same answer.  In 
each case the children produced different models that were closely linked to the context.  Fosnot 
and Dolk go on to state that it is easy for students to notice that the answers are the same but that 
the important issue is for them to see the connections among the models to develop a generalized 
framework for the operations.  In the work that follows, we focus on the nature and type of 
representations that students build, retrieve, and use over time, and how this relates to their 
mathematical flexibility.   

The students in these studies had, essentially, used three main strategies to solve a particular 
series of problems (Bulgar, 2002; 2003a; 2003b; Bulgar, Schorr & Maher, 2002).  There were no 
strategies other than these three observed in either the classroom-based studies or the teaching 
experiment. 



These strategies consisted of the following:  
• Reasoning involving natural numbers 
• Reasoning involving measurement 
• Reasoning involving fraction knowledge   

The predominant solution method observed in the fourth grade study of the same students 
(see Bulgar, 2002, 2003a, 2003b) consisted of reasoning involving natural numbers.  Essentially, 
these students built models that converted the meters to centimeters, thereby substituting the 
fraction division with natural number division, a topic generally prominent in fourth grade 
mathematics curricula in New Jersey (NJ Mathematics Coalition and NJ State Department of 
Education, 2002). However this solution method was seen in the work of only one fifth grader in 
the replicated study, and even when it did appear, there was a claim by the student that it was 
developed after the problem was solved using reasoning involving fraction knowledge (Bulgar, 
2003a, b).  All of those students in the fifth grade who drew representations, created linear 
models to represent the division of a piece of ribbon into various-sized bows. 

METHODS AND PROCEDURES 
BACKGROUND, SETTING AND SUBJECTS  

The study currently addressed took place during the 2001-2002 school year, when the 
subjects, thirteen girls, were in sixth grade.  Twelve of these students had been taught 
mathematics by the same teacher, the first author of this paper, during fifth grade. The students 
attended a small parochial school in New Jersey, which attracts children from several 
surrounding communities. A fundamental premise of the instructional environment was that in 
order to build mathematical ideas, students needed to be engaged in mathematical activities that 
promote understanding (Davis & Maher, 1997; Maher, 1998; Cobb, Wood, Yackel & McNeal, 
1993; NCTM, 2000; Klein and Tirosh, 2000; Schorr, 2000; Schorr and Lesh, 2003).  Therefore, 
conditions established during the fifth grade, were set up to create a classroom community in 
which student inquiry and discovery were of paramount importance.  The classroom 
environment was one in which students’ ideas were always respected.  Students were questioned 
and encouraged to explain their solutions, developing their own sense of accuracy.   Alternate 
strategies were encouraged, shared and discussed, as students were invited to discuss their 
thinking and to submit ideas in writing.  Students were not taught algorithms.  When they 
recognized patterns and could justify that these patterns were valid, they created generalizations, 
which they could apply to future problems.  Questions were used to elicit explanations, to guide 
students towards persuasive justifications of their solutions and to redirect them when they were 
engaged in faulty reasoning.  Justification of solutions became a part of the classroom culture.  

Because essentially the same group of students who were taught by the first author in fifth 
grade were grouped together again in sixth grade, (Twelve of the students were from the original 
group and there was an addition of one new student.) and taught mathematics by the same 
teacher, an opportunity was presented to closely examine longitudinal development of 
mathematical ideas within the framework of regular teaching practice.   The Tuna Sandwiches 
task, the problem that is the subject of this paper, was the first one assigned as these students 
began sixth grade.   

DATA  
The data examined here consist of artifacts of actual student work, which were collected over 

the course of approximately six weeks.  Written notes from the teacher were attached to some of 
the work, usually in the form of questions and answers to these questions also appear in the 



students’ writing. 

TASKS 
The primary task studied here, “Tuna Sandwiches”, was created by the first author to be 

isomorphic with the problem done during the previous year called “Holiday Bows”2,  which 
introduces division of a natural number by a common fraction.  The Tuna Sandwiches problem 
follows. 

Mr. Tastee’s restaurant serves four different kinds of sandwiches.  A junior sandwich 
contains 1/4 lb of tuna; a regular sandwich contains 1/3 lb of tuna; a large sandwich 
contains 1/2 lb of tuna and a hero sandwich contains 2/3 lb of tuna.  Tuna comes in cans 
that are 1lb, 2 lb, 3lb and 5 lb.  How many of each type of sandwich can you make from 
each size can?  Find a clear way to record your information.  You will need to write a 
letter to the restaurant owner, Mr. Tastee, and give him your findings. 

One of the goals in creating the “Tuna Sandwiches” problem was for it to lend itself to be 
represented by an area model rather than a linear model, as was the case with “Holiday Bows”.  
Fosnot and Dolk (2001) state that just because we create a problem with certain models in mind, 
we cannot be assured that this model will be used by students.  By creating a problem that was 
essentially isomorphic to the “Holiday Bows” problem, (the one that was completed by both the 
fourth graders in the teaching experiment and the fifth graders in the regular classroom of the 
first author), yet embodied in a different type of representation, an area model, the notion of 
flexibility could be explored as well as an examination of the durability of the knowledge the 
students had demonstrated during the previous year. 

RESULTS AND DISCUSSION 
 All of the sixth grade students solved the problem using the approach of reasoning involving 

fraction knowledge.  That is, they reasoned that if a sandwich requires 1/4 of a pound of tuna, 
four such sandwiches could be made from every pound of tuna, so what was necessary in order 
to find the solution was to multiply the number of pounds of tuna in a can by four.  In both the 
fourth grade and the fifth grade studies, dividing by the non-unit fraction, 2/3, had proven to be 
more problematic.  One might conjecture that the linear model used by students would be more 
conducive to solving problems such as 2 ÷ 2/3, because it is a continuous model.  Yet, several 
fourth and fifth grade students who had used reasoning involving fraction knowledge had 
difficulty with this because it was arduous to give meaning to the piece that was “left over”; it 
was not clear how many two-thirds there were in one.  One student in the fourth grade group 
stated the following when explaining how many bows, each 2/3 meter in length could be made 
from a piece of ribbon that is 2 meters long.   

Alex: There’s three thirds [in one meter] so there’s two-thirds and one-third and 
one-third that’s two-thirds and you still have one two thirds left over…[while 
drawing picture] ... so then... so you only have one third so then you have to 
get the other third.  This is two thirds so then you have two more [one] thirds 
left over. 

Jon: [pointing to Alex’s drawing] And there are six ones [1/3] is in each, and it 
would be two-thirds is one [bow], two-thirds is again [a bow] and two [one] 
thirds left. 

Alex: I think it’s 4 [bows]. 
Alex looked at the two one-meter parts of his two-meter ribbon as two discrete entities.  He 

did not seem to realize that the two one-third meter pieces that remained at the end of each meter 



could be used to make another bow.  Although all of the fifth grade students eventually were able 
to find out how many bows, each 2/3-meter in length could be made from the various lengths of 
ribbon, they also had greater difficulty with this set of problems than they had when dividing by 
the unit fractions. 

None of the thirteen sixth graders used a linear model to solve the Tuna Sandwich Problem.  
Ten of the thirteen students actually drew area models to represent their solutions and three 
merely explained their thinking without referring to a model.  It is interesting to note that each of 
these area models included discrete drawings for each pound of tuna.  One would think that the 
problems involving the hero sandwiches, those which each required 2/3 lb. of tuna, would be 
more difficult to solve when using discrete area models.  Yet, there was no mention of greater 
difficulty.  In fact, several students stated that each one-pound of tuna would yield one and one-
half hero sandwiches.  It appeared that the shift in unit was made seamlessly.  One-third pound 
of tuna was recognized to be one half the quantity needed to make a hero sandwich, which 
required two-thirds pound of tuna. 

Though they were not asked to do so, most of the sixth graders spontaneously formed some 
kind of graphic organizer to structure their results.  Seven of the thirteen students formed a 
matrix indicating the amount of tuna required (for each sandwich) as one dimension and the 
different-sized cans of tuna as the other dimension.  Four of the students indicated their solutions 
in an organized listing.  One of these students had both an organized listing and a matrix. 

Since the students specified their solutions using reasoning involving fraction knowledge by 
looking first at how many sandwiches of each type could be made from a one pound can of tuna, 
it is interesting to note that very few used proportional reasoning, using multiplicative structures 
to arrive at solutions involving multiple-pound cans of tuna. Most used additive structures.  
Stephanie begins by alluding to proportional reasoning when she writes the following as she 
explains her solutions for finding out how many regular sandwiches, those requiring 1/3 pound 
of tuna, could be made from each of the various sized cans. 

 Stephanie: [sic] You can only make 3 sand. With one lb of tuna because 3 thirds make 1. 
(3/3=1)  With one more lb of tuna (2lb) you can make twice as many sand. So 
you have 6 sand.  With 3 lb of tuna you can make 3 more sand. (9 altogether) 
because you have one more lb of tuna which make 3 sand. Because 3 thirds 
(3/3) =1.  Now with 5 lb. you add not 3 sand. But 6 because it is not 4 lb, but 5 
lb of tuna.   

Stephanie seems to be going back and forth between multiplicative ideas and additive ones, 
adding on multiples of three sandwiches.  When Stephanie explains her solution to the hero 
sandwich problem, the one involving division by a non-unit fraction, she states the following. 

Stephanie:  [sic] So with a 1 lb can you can make 1 sand. and a 1/2 of another because it 
is 2/3 of a lb of tuna [required for each hero sandwich] so you have 2/3 left 
which is 1/3 left which is 1/2 of 2/3.  A 2 lb can of tuna you can make 3 sand. 
easily and the excess is 1/3 from both so that makes 3… Now for a 5 lb. can 
you can make 6 1/2 sand. because you can make 5 easily and 2 1/2 more with 
the extra of each lb.  

Though Stephanie’s solution of 6 1/2 sandwiches is not consistent with her explanation, she 
has demonstrated an understanding that 1/3 of a pound of tuna represents 1/2 of a hero sandwich, 
an idea that students had more difficulty understanding the previous year when they worked with 
the linear model suggested by the Holiday Bows problem.  It would appear that she is first 
counting the complete sandwiches that can be made from each pound, the ones she refers to as 



being made “easily”, and then is gathering up the remaining 1/3 pounds from each can to 
combine them in order to make additional sandwiches.  This kind of thinking was also observed 
in the representations of other students, such as Gabriella, Lynn, Amy, Sarah and Bea, who drew 
connecting lines to the “leftover” one-third pound of tuna in each representation of a one-pound 
can. 

After completing a lengthy explanation of her solutions, Eve wrote the following reflection 
on her work. 

Eve:  P.S. When I was figuring this out for you I noticed something interesting.  I 
noticed [sic] That by the junior sandwich (1/4 lb.) you added 4 by every can of 
tuna.  This is because every time the can get bigger by 1 lb (from which you 
can make 4 sandwiches) so you just add another 4 and the 5 lb., it is 2 more 
lbs. So you add 8 instead of 4.   

Though Eve used reasoning involving fractional knowledge, she applied additive reasoning to get the 
solutions. 

Sarah used multiplicative reasoning in finding the solutions.  She wrote the following. 
Sarah: [sic] Out of 3 pound you can make 12 junior. There is 4 in each and 4 x 3 = 12. 

Sarah included a diagram of 3 circles divided into four sections or fourths.  She numbered the 
sections from one to twelve.  She used this structure for all of her solutions. 

Gabriella also used multiplicative reasoning.  She drew five circles, divided them in half 
vertically and stated the following. 

Gabriella: [sic] How much large sandwiches can you make from 5 pounds.  Let’s try 
those imaginary pounds [her drawings].  Well 2 in each of the 5 pounds 5x2 = 
10! 

In the summative class discussion of the Tuna Sandwiches Problem, students talked about the 
problem and how it was just like the problem they had done the previous year called “Holiday 
Bows”.  Those who did not recognize it at first agreed when their peers noted the isomorphism.  
They recognized that the problem required division of fractions and easily explained their 
solutions using symbolic notation.  For example, when summarizing that three hero sandwiches 
could be made from two pounds of tuna, they were able to create the number sentence, 2÷2/3 =3. 
Some of the number sentences that the students provided were recorded on an overhead projector 
transparency.  These number sentences are seen as solutions representing conceptual 
understanding derived from the use of student-generated models, rather than as algorithmic 
answers. Once the students agreed that they had solved these problems involving division of 
fractions, they were assigned numerical problems, one at a time.  The first problem was 2 ÷ 3/4.  
They were told to build a model to solve the problem and to explain how the model can be used 
to find the solution.  Some (Michelle, Amy and Rose for example) wrote the problem as “How 
many 3/4’s are in 2?”  This would indicate an understanding of the meaning of division.  
Subsequent to providing solutions for this problem, students worked on the problem, 5/8 ÷ 2 1/2.  
What is interesting to note here is that when drawing models to solve these problems, students 
invariably went back to linear representations.  Many referred specifically to Cuisenaire Rods® 
when they discussed their linear models.  They had worked with these materials early in fifth 
grade to build basic concepts about fractions.  The activities in which they were engaged using 
these materials were modeled after those used and documented in another study (Steencken, 
2001). 

CONCLUSIONS 
Students in the sixth grade were able to retrieve ideas they had built about division of 



fractions during the previous school year, and these ideas were used and extended appropriately.  
Many students demonstrated flexible thought in the way they indicated their grasp of division of 
fractions and extended their understanding to more complex division of fractions problems.  
When first confronted with a task involving division of a natural number by a fraction in fifth 
grade, they made use of linear continuous models.  Our results show that when a similar problem 
was given to the same students a year later, one that lent itself to an area model, students 
demonstrated flexible thinking in their ability to seamlessly move to a discrete area model and 
durability of the ideas they built the previous year in their ability to effortlessly move from linear 
models to area models and back to linear models as needed.  Many recognized and verbalized 
that the Tuna Sandwiches Problem was “the same” as the Holiday Bows Problem. They revealed 
their flexible thinking in their ability to use a variety of representations for the same idea, 
division of fractions, and to link, extend and modify those representations to a variety of 
situations (Warner, Alcock, Coppolo, 2003; Warner & Schorr, in progress). They moved easily 
back and forth between area models and linear models as they worked on contextual tasks and 
used models to solve numerical problems.  This is significant because as Fosnot and Dolk (1991) 
indicate, models represent strategies used to solve problems and thereby develop into 
mathematical tools.  Generalization is characteristic of this development. 

ENDNOTES 
 1 This research was supported in part by grant MDR 9053597 from the National Science 

Foundation and by grant 93-992022-8001 from The NJ Department of Higher Education.  The 
opinions expressed here are those of the authors and are not necessarily the opinions of the 
National Science Foundation, The NJ Department of Higher Education, Rutgers University or 
Rider University. 

2 For a full description of this task and results see Bulgar, 2002; Bulgar, 2003a; Bulgar, 
2003b; Bulgar, Schorr & Maher, 2002. 
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