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Abstract

Recent experiments show that the cage isomer of the water hexamer is lower in energy than the

prism isomer near 0 K, and yet state-of-the-art electronic structure calculations predict the prism to

be lower in energy than the cage at 0 K. Here we study the relative energies of the water hexamers

from the parametric 2-electron reduced-density-matrix (2-RDM) method in which the 2-RDM

rather than the wavefunction is the basic variable of the calculations. In agreement with experiment

and in contrast with traditional wavefunction methods, the 2-RDM calculations predict the cage to

be more stable than the prism after vibrational zero-point correction. Multiple configurations from

the hydrogen bonding are captured by the method. More generally, the results are consistent with

our previous 2-RDM applications in that they reveal how multireference correlation in molecular

systems is important for resolving small energy differences from hydrogen bonding as well as other

types of intermolecular forces, even in systems that are not conventionally considered strongly

correlated.
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I. INTRODUCTION

Isomers of the water hexamer are the smallest stable water clusters whose water molecules

are interwoven by three-dimensional networks of hydrogen bonds. Understanding these

interactions at the relatively simple level of the hexamers is critical for understanding the

behavior of bulk phases of water. The structure and energies of the hexamers, particularly

the low-lying prism and cage isomers, have been an important testing ground for both

empirical and ab initio force fields employed in large-scale simulations of water [1, 2]. The

water hexamers are also fundamentally interesting from a quantum chemical perspective

because of their hydrogen bonding networks.

The energies and intermolecular forces of the water hexamer clusters depend on a subtle

balance of electronic correlation and nuclear quantum effects, which presents a consider-

able challenge for quantum chemical theories. The electronic correlation has been addressed

in previous studies [3–9], including those that have applied coupled cluster with single,

double, and perturbative triple excitations [CCSD(T)] in augmented polarized triple-zeta

basis sets [7] and extrapolated complete basis sets [8, 9]. The accurate inclusion of nuclear

quantum effects has been recently addressed by impressive quantum Monte-Carlo (QMC)

simulations of the prism and cage on full-dimensional potential energy surfaces (PES) from
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CCSD(T) [10]. Despite the sophistication of these calculations, there remains a small but

important discrepancy with recent experiments [11], which reveal that the cage structure

is the global energy minimum at sufficiently low temperatures. Building upon earlier ex-

periments on water clusters [12–18], these experiments employed a chirped-pulse Fourier

microwave spectroscopy with supersonic expansions [11]. The CBS/CCSD(T) calculations,

treating the vibrational motion in the harmonic approximation, find the prism to be more

stable than the cage by 0.09 kcal/mol [8, 9, 19]. The results of QMC simulations which

include anharmonic contributions to the vibrational motion find the prism and cage to be

isoenergetic, leading to the inference that the two isomers will be found in 1:1 ratios near

0 K [10].

In this paper we take a different approach to treating the critical electronic correlation in

the prism and cage using the two-particle reduced density matrix (2-RDM) method [20–25]

in which the 2-RDM is parameterized to be N -representable with size extensive energies.

The method has been shown to include some multi-reference correlation effects that are

not captured by traditional single-reference correlation methods [26–30]. We present results

using parametric 2-RDM (p2-RDM) calculations in an augmented correlation-consistent

polarized triple-zeta (aug-cc-pVTZ) basis set and in the complete basis set (CBS) limit

which, when corrected for vibrational motion, find the cage to be the global minimum

energy structure, in agreement with the most accurate experimental measurements. In

addition to supporting experimental findings, these results highlight the importance of the

subtle shades of single- and multi-reference correlation to describe chemical phenomena like

hydrogen bonding.

II. THEORY

The energy ordering of the hexamers was recently revisited in a beautiful experiment by

Pate and co-workers which measured the broadband rotational spectra of water clusters in

low-temperature inert-gas expansions using helium, neon, and argon [11]. “Relative isomer

populations,” they wrote, ”at different expansion conditions establish that the cage isomer is

the minimum energy structure.” Theoretically resolving such small differences in electronic

energy demands sufficient coverage of the one-particle Hilbert space and an accurate and

balanced treatment of single- and multi-reference correlation effects. In this section we
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present an overview of the parametric 2-RDM (p2-RDM) method as some additional details.

FIG. 1. Schematic of relative energies of the prism and cage isomers in kcal/mol considering only

electronic energy (bottom) and considering both electronic and zero-point vibrational energy (top).

While the electronic energy of the prism isomer is slightly lower than that of the cage, the nuclear

zero-point energy raises the energy of the cage less than the energy of the prism, leading to the

prediction that the cage is the global minimum energy structure at 0 K.
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A. Overview of p2-RDM method

It has been shown that using the 2-RDM as the fundamental variable, parameterized by

N -representability conditions, captures single-reference correlation as well as some multiref-

erence correlation not usually recovered by single-reference theories [20–22, 26–30]. In the

p2-RDM methods, the 2-RDM is parametrized in terms of single and double excitations to

remain very nearly N -representable. A 2-RDM is N -representable if it can be derived by

integrating an N -electron density matrix [31]. The expression for the energy is minimized

as a functional of the 2-RDM to generate the ground-state energy without additional ref-

erence to the many-electron wavefunction [20, 23, 24]. This 2-RDM-based method is faster

and more accurate than comparable electron-pair-based wavefunction methods including

coupled cluster with single and double excitations (CCSD). The p2-RDM has been used

to study systems that require a balanced description of single- and multi-reference electron

correlation effects including the diradical isomers of olympicene and the rotational barrier in

diazene [27]. It has also been employed to resolve small energetic differences, which can be

sensitive to multi-reference effects, in calculating the energy barrier stabilizing oxywater [22]

and the relative populations of the cis and trans isomers of carbonic acid at 210 K [26].

B. Details of p2-RDM method

The 2-RDM in the p2-RDM method is parameterized using first-order corrections to the

Hartree-Fock 1- and 2-RDMs. Higher order corrections of the 1- and 2-RDMs, 1R[ 2T, 1T ]

and 2R[ 2T, 1T ], are expressed as functionals of their lowest order corrections [21]:

2D ≈ 2D[ 2T, 1T ] = 2T + 2R[ 2T, 1T ] (1)

1D ≈ 1D[ 2T, 1T ] = 1T + 1R[ 2T, 1T ]. (2)

where 2D and 1D are the 2- and 1-RDMs, 2T is the first-order part of 2D, and 1T is the

second-order part of 1D. The parametrization must enure that the 2-RDM remains N -

representable.

N -representability constraints are introduced through the use of the Cauchy-Schwarz

5
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TABLE I. The definitions for the topological factors fabcd
ijkl are given by fnv

no
where no is the number

occupied spin orbitals shared between {i, j} and {k, l} and nv is the number of virtual spin orbitals

shared between {a, b} and {c, d}. The 9 possible combinations of no/nv and the values of the

topological factor for these combinations are listed in the table for the following three methods:

configuration interaction doubles (CID), coupled electron pair approximation (CEPA-0), and p2-

RDM with the M parameterization [20, 21].

Topological factor, fno
nv

Method 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2

CID 1 1 1 1 1 1 1 1 1

CEPA(0) 0 0 0 0 0 0 0 0 0

p2-RDM 0 0 1 0 1 1 1 1 1

inequalities [20, 21]:

(2Dab
ij )2 ≤ 2Dij

ij
2Dab

ab (3)

(2Qab
ij )2 ≤ 2Qij

ij
2Qab

ab (4)

where 2Q is the two-hole reduced density matrix. Using these inequalities, we can derive a

2T functional for the elements of the 2-RDM 2Dab
ij connecting a pair of occupied orbitals, i

and j, with a pair of unoccupied orbitals, a and b:

2Dab
ij = 2T ab

ij

√
1 − 1

4

∑

klcd

fabcd
ijkl | 2T cd

kl |2. (5)

When the topological factor fabcd
ijkl is set to one in all cases, we have configuration interaction

with double excitations (CID); when the topological factor fabcd
ijkl is set to zero in all cases, we

have the coupled electron pair approximation (CEPA-0). When we employ Cauchy-Schwarz

inequalities, however, we can obtain the values of the topological factor, known as the M

functional [20, 21], labeled in Table 1 as p2-RDM. Unlike CID, the p-2RDM method with the

M functional is size extensive, and unlike CEPA-0 it is nearly N -representable. In practice,

we also explicit include single excitations [21]. Further details of the p2-RDM method can

be found elsewhere [20–22, 26–30].
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TABLE II. Relative energies (kcal/mol) of the cage and the prism from p2-RDM are compared

to previously reported CCSD(T)/CBS estimates. Energies with (E+ZPVE) and without (E) the

zero-point vibrational energy (ZPVE) are reported. The p2-RDM relative energies were computed

in the aug-cc-pVTZ (ATZ) basis set and the complete basis set (CBS) limit.

Energy of the Cage Relative to the Prism (kcal/mol)

CCSD(T) [19] p2-RDM

CBS CBS+ZPVE ATZ CBS ATZ+ZPVE CBS+ZPVE

0.25 0.09 0.0729 0.0714 -0.0871 -0.0886

III. APPLICATIONS

After providing computational details, we present relative energies and densities of the

cage and prism isomers from the p2-RDM method with comparisons to previous calculations.

A. Computational details

Geometries for the cage and prism were taken from Ref. [8] and optimized by second-order

Møller-Plesset perturbation theory using Dunning’s triple-zeta basis set plus polarization

functions [32] (MP2/TZP) within the electronic structure package GAMESS [33]. The

nuclear gradients were tightly converged, and the stationary geometries were verified to be

local minima through frequency analysis. Using these geometries for the prism and cage, we

computed the ground-state energies from the p2-RDM using correlation-consistent basis sets

with and without diffuse functions, including cc-pVDZ,cc-pVTZ, aug-cc-pVDZ, and aug-cc-

pVTZ [32]. The complete basis set (CBS) limit of the correlation energy was computed

with the two-point formula [34], EX
corr = ECBS

corr + βX−3, with the cc-pV[DT]Z basis sets.

The CBS limit of the mean-field energy was computed using a three-point formula [35],

EX
RHF = ECBS

RHF + βexp(−αX) with the cc-pV[DTQ]Z basis sets. Although the optimized

geometries from MP2 in TZP are not necessarily equal to the optimized geometries from

p2-RDM in cc-pVTZ or the CBS limit, previous studies as well as our own calculations show

that the potential energy surfaces of the hexamers are fairly flat, meaning that the energies

do not change significantly with geometry. We employed the nuclear zero-point vibrational

7
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energy from Ref. [19]. The largest calculations employed more than 500 one-electron basis

functions. Calculations were performed on a cluster of Intel Xeon 2.9 GHz (Sandy Bridge)

processors with 380 GB per node.

B. Results

The electronic energy of the cage relative to the prism is predicted by the p2-RDM calcula-

tions to decrease with increasing basis set size, with the cage being less stable than the prism

by 1.5 kcal/mol and 0.07 kcal/mol in the cc-pVDZ and aug-cc-pVTZ basis sets, respectively.

Calculations extrapolated to the CBS limit also find the cage to be just 0.07 kcal/mol above

the prism, so that when zero-point vibrational energy is considered, the cage is predicted to

be more stable than the prism by about 0.09 kcal/mol at both the aug-cc-pVTZ and CBS

level (see Table 2 and Fig. 1). This prediction reverses the relative energies predicted by

the CBS/CCSD(T) calculations [19]. From the QMC studies, it is clear that more sophisti-

cated treatment of nuclear motion tends to stabilize the cage relative to the prism; however,

the potential energy surfaces used by these simulations were derived from CCSD(T) ener-

gies which likely overstabilize the prism relative to the cage, leading to a 1:1 (cage:prism)

isomeric ratio at 0 K. From the electronic energies predicted by the p2-RDM, along with

corrections for nuclear motion, one would expect the isomeric ratios to tend towards 1:0

near 0 K.

The purpose of the present paper is to demonstrate the role of a small but significant

amount of multi-reference correlation in stabilizing the energy of the cage relative to the

energy of the prism. We show that the addition of a harmonic-zero point vibrational energy

to the electronic energy is sufficient in the case of the p2-RDM method to stabilize the

cage relative to the prism. Such stabilization is not achieved by standard single-reference

wave function methods. Using zero-point vibrational energies from our MP2 calculations

in the cc-pVTZ basis set rather than those from the literature [19] does not significantly

change the results. Furthermore, as shown in the QMC studies [10], a more detailed study

of enharmonic vibrational corrections, beyond the scope of the present study, only further

stabilizes the cage relative to the prism.

Both the size of the basis set and the recovery of electron correlation are critical to

capturing the relative energies of the water hexamer clusters. In addition to the large basis

8
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FIG. 2. Plot of the 9 lowest unoccupied natural orbital occupation numbers (LUNO through

LUNO+8) for cage and prism. For the cage, with 8 hydrogen bonds, the HONO-7 through

LUNO+7 have strong correspondence to orbitals active in hydrogen bonding. For the prism,

with 9 hydrogen bonds, the HONO-8 through LUNO+8 have strong correspondence to orbitals

active in hydrogen bonding.

set of Table 2, we also employed a smaller polarized double-zeta basis set in which we could

compare CCSD, CCSD(T), and p2-RDM directly. The CCSD, CCSD(T), and p2-RDM

methods give the following energies for the cage relative to the prism: −0.821 kcal/mol,

−0.871 kcal/mol, and −0.599 kcal/mol. While the addition of triple excitations raises the

CCSD energy of the cage by 0.05 kcal/mol, the p2-RDM method lowers the CCSD energy by

more than 0.2 kcal/mol. Previous p2-RDM studies of oxywater [22], carbonic acid [26], and

HOOO radical [28] have shown that the p2-RDM method can capture small but important

energy changes, attributable to multireference effects, that are missed by traditional methods

like CCSD and CCSD(T). Although neither coupled cluster not p2-RDM methods predict

the cage to be the most stable structure in the polarized double-zeta basis set, in the larger

aug-cc-pVTZ basis set and CBS limit the additional electronic stability of the cage from

p2-RDM translates into the cage being the global energy minimum of the potential energy

surface (after the addition of the vibrational zero-point energy).

For all methods, although the total electronic energy of the cage relative to the prism

decreases significantly as the size of the basis set increases, the correlation energy of the cage

relative to the prism actually increases with basis-set size. Opposite trends in the total and

correlation energies are achieved because the correlation energy’s increase is more than offset

by a corresponding decrease in the mean-field (Hartree-Fock) energy with basis-set size. At

9
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FIG. 3. The electron densities of the six highest occupied natural orbitals (HONOs) and six lowest

unoccupied natural orbitals (LUNOs) of the cage isomer are shown. The HOMOs show that density

is localized about one or more oxygen atoms, which serve as hydrogen-bonding donors, and the

LUMOs show that density is localized about hydrogen atoms, which serve as hydrogen-bonding

acceptors.

the CBS limit the Hartree-Fock energies of the cage and prism differ by less than 0.01 kcal

per mole with the cage isomer being slightly favored. For all methods in either large basis

sets or the CBS limit the addition of the correlation energy destabilizes the cage relative to

the prism. However, this destabilization is greater for the coupled cluster methods than for

the p2-RDM method. In the case of the p2-RDM method the destabilization of the cage is

sufficiently small for it to be reversed by the addition of the zero-point vibrational energy,

as shown in Fig. 1.

The hydrogen bonds in the water hexamers are not as strong as the covalent bonds

connecting the oxygen and hydrogen in the water molecule. Consequently, the 2q natu-

ral orbitals corresponding to the hydrogen bonds will generally be the q highest occupied

natural orbitals (HONOs) and q lowest unoccupied natural orbitals (LUNOs). The natural

orbitals are the eigenfunctions of the one-electron reduced density matrix (1-RDM) [31, 36].

There are eight (q = 8) and nine (q = 9) hydrogen bonds in the cage and prism isomers,

respectively. The occupations of the nine LUNOs are shown in Fig. 2 for both the cage

and prism isomers. Importantly, the cage’s occupation of its ninth orbital is significantly

10

Page 10 of 15

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



less than the prism’s occupation of its ninth orbital, which reflects the additional hydrogen

bond of the prism. This decrease in the occupation of the cage’s ninth orbital (relative to

the prism) seems to coincide with an increase in the occupation of the cage’s sixth orbital

(LUNO+5). The greater density filling of the cage’s sixth orbital may compensate in en-

ergetic stability for the cage’s lack of an additional ninth hydrogen bond. Such trade-offs

indicate the subtlety of electron correlation present in the hydrogen bonding of the water

hexamer clusters.

We can also approximately view the electron density of the hydrogen bonds by exam-

ining the electron density of the appropriate natural orbitals. Figure 3 shows the electron

densities for the six “highest” occupied natural orbitals and the six lowest “unoccupied”

natural orbitals. The HONOs show that density is localized around the oxygen atoms,

which serve as hydrogen-bonding donors; the LUNOs show that density is localized around

the hydrogen atoms, which serve as hydrogen-bonding acceptors. While the densities of the

LUNOs may be relatively low, the electron configurations associated with these orbitals are

likely of great importance in capturing the subtle energy differences between isomers. The

electron densities of the HONOs and LUNOs associated with hydrogen bonding are nearly

identical between the cage and prism (not shown) structures. However, noticeable differ-

ences are observed between the cage and prism in their ninth highest “occupied” natural

orbitals (HONO-8) and their ninth lowest “unoccupied” natural orbitals (LUNO+8). These

differences likely reflect the lack of a ninth hydrogen bond in the cage isomer. Overall these

pictures of the orbital electron densities are consistent with our findings.

IV. CONCLUSIONS

The energy ordering of the cage and prism isomers of water hexamer, as determined by

recent experiments [11], can be recovered by reduced-density-matrix-based electronic struc-

ture calculations in large basis sets with corrections for the zero-point nuclear motion. In

contrast, previous electronic structure calculations with CCSD(T) in the CBS limit [8–10]

have predicted the prism to be lower in energy than the cage. The difference in these re-

sults likely arises from the important but subtle role played by multi-reference correlation

effects. In recent applications to studying the rotational barrier in diazene [27] and the vari-

ous isomers of the 5-ring molecule olympicene [29], the p2-RDM method has been shown to

11
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recover as much as 10 kcal/mol of multireference correlation that is not described by tradi-

tional single-reference methods. Perhaps more importantly, in applications to the stability

of oxywater [22] and the relative populations of carbonic acid isomers [26], the p2-RDM has

been shown to recover small but potentially critical amounts of multireference correlation

(0.5-2 kcal/mol), not well described by traditional single-reference methods. Although the

water hexamers are not typically considered to possess significant multireference correlation,

in the calculation of small energy differences, as in the cases of oxywater and carbonic acid,

minor multireference effects can become quite significant. These computational results have

important implications for future constructions of ab initio force fields and potential en-

ergy surfaces used in classical or quantum-mechanical simulations of water’s structure and

dynamics. More generally, they provide new insight into the importance of multireference

electron correlation in the accurate quantitative description of hydrogen bonding and other

intermolecular forces.
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