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General Development of Fresnel and Modal equations

Fresnel Equations

Consider an L-layer system, with Figure 1 depicting the L = 4 case. The optical response in each
layer j arises from the (in general) frequency-dependent refractive index, Nj(ω) = nj(ω) + ikj(ω),
where nj and kj are real numbers. The associated electrical permittivity is εj = N2

j . Layers j =
1 and j = L are semi-infinite, generally non-absorbing dielectric materials characterized by real,
positive refractive indices, N1 = n1 > 0 and NL = nL > 0. The central layers 2,.., L-1 could include
absorbing materials that are described by complex refractive indices. Metallic layers are absorbing
but can also be such that Re(εj) = Re(N2

j ) = n2j - k2j < 0. Since the films, with our coordinate
system choice (Fig. 1), are homogeneous in the y-direction, the relevant tangental electrical field
component is taken to be the real part of the phasor exp(i(kxx− ωt)) E(z) with [1,2]

E(z) =


E+

1 exp(ikz1z) + E−1 exp(−ikz1z) z < z1 ≡ 0
E+

2 exp(ikz2(z − z1)) + E−2 exp(−ikz2(z − z1)) z1 < z < z2
...

E+
L exp(ikzL(z − zL−1)) + E−L exp(−ikzL(z − zL−1)) z > zL−1
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where the z-component of the wavevector in each layer satisfies

kzj = ±
√
N2
j k

2
0 − k2x , (1)

with k0 = ω/c. For p-polarized light E(z) ≡ Ex(z), and for s-polarized light E(z) ≡ Ey(z).
The boundary conditions for satisfying Maxwell’s equations are that the tangential components

of the magnetic (and electric) field be continuous across each interface, which leads to [1]:(
E+

1

E−1

)
=D−11 D2

(
E+

2

E−2

)
and (

E+
l

E−l

)
=Pl D

−1
l Dl+1

(
E+
l+1

E−l+1

)
for l = 1, ..., L− 1. The matrix Dl is defined

Dl =

(
cos(θl) cos(θl)
Nl −Nl

)
for p-polarized light and

Dl =

(
1 1

Nl cos(θl) −Nl cos(θ1)

)
for s-polarized light. For the entire L-layer structure, we have(

M11 M12

M21 M22

)
= D−11

(
L−1∏
l=2

DlPlD
−1
l

)
DL,

where Pl is

Pl =

(
exp(−ikzldl) 0

0 exp(ikzldl)

)
.

We are interested in the Fresnel solutions corresponding to Kretschmann-Raether (K-R) exci-
tation and therefore imagine incident waves from the bottom, j = 1, semi-infinite layer, which we
generally take to be an appropriate glass or prism material. Solving the matrix equation under
consideration of such a specific incident wave is equivalent to solving the Fresnel equations for the
L-layer structure, which can therefore be written as(

E+
1 = 1

E−1 = r

)
=

(
M11 M12

M21 M22

)(
E+
L = t

E−L = 0

)
. (2)

The reflection and transmission amplitudes are given by

r =
M2,1

M1,1
(3)

and

t =
1

M1,1
, (4)
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Figure S1: Schematic of 4 layer system with two absorbing layers with finite thickness (d2 and d3)
sandwiched by 2 semi-infinite dielectric layers. Because we focus particular attention the modes
accessible in K-R experiments, we assume ε1 > ε4.

and the reflection and transmission probabilities are

R = |r|2 (5)

and

T =
nL cos(θL)

n1 cos(θ1)
|t|2. (6)

The x component of the wavevector is a positive real number, kx = N1k0 sin(θ1), with θ1 being
the real angle of incidence. The various kzj for j = 2,...,L−1 may be complex but the choices taken
for the signs in Eq. 1 do not matter because each of these layers has both incoming and outgoing
terms. Regarding kzL, the physically acceptable solutions is either a real positive number or a
purely imaginary value with positive imaginary part, the latter case corresponding to an evanescent
wave in layer L. With all these specifications of kx and the kzj , M1,1 and M2,1 and thus the
transmission and reflection properties may be directly evaluated.

Modal Equations

The modes supported by an arbitrary thin film structure must obey the same conditions on the
tangential components of the fields as were imposed by Eq. (6). However, the modes are generally
defined to satisfy (

E+
1 = 0
E−1

)
=

(
M11 M12

M21 M22

)(
E+
L

E−L = 0

)
, (7)

which differs from the physical Fresnel case, Eq. (2), because there is no incoming source term
(E+

1 = 0). It is possible to re-express Eq. 11 into the form of a homogeneous equation that maps
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the outgoing (E−1 , E+
L ) waves defined in relation to the central structure onto the (zero-valued)

incoming or source waves (E+
1 , E−L ) and so the modes are often referred to as being solutions of

a homogeneous equation. It is easy to see that Eq. 11 is satisfied if M1,1 = 0. In general this
condition cannot be satisfied with the real value of kx used to solve the physical Fresnel equations
as in Sec. IIA above. Rather, one must extend kx into the complex plane,

kx = β + iα, (8)

and see if one or more complex values of kx can be found such that M1,1 = 0. Furthermore, it is
then the case that all the kzi are complex, which means that there can be a variety of exponentially
decaying and growing possibilities for regions 1 and L depending on the sign of kzi. Several of these
solutions may correspond to physically relevant modes. There are several important symmetries to
be aware of. First, as already noted in the case of the physical Fresnel equations, the solutions are
unchanged by sign permutation of kz in the absorbing layers [1]. Second, regarding the outer layers,
it is the case that if M1,1(kz1) = 0, then M2,1(−kz1) = 0 and similarly for kzL. Since the reflection
is proportionate to M2,1 (see Eqs. (3) and (5)) this means that the existence of a mode (i.e., M1,1

= 0) with one choice of sign for kz1 leads to a reflection zero with the opposite sign choice.
Some authors have considered designating the modes by the sign of Im(kzi) in the dielectric

layers [3]. One particularly appealing choice of signs of the imaginary parts that is often invoked
is one that leads to exponential decay away into the j = 1 and j = L layers, which represents
a purely bound mode. However, we have found (Sec. III) that such requirments on just the
imaginary parts do not necessarily lead to modal dispersions that are continuous in frequency.
Alternatively, we suggest minimal constraints on the waveforms in the dielectric layers that lead
to distinct, continuous dispersions for the modes supported by the L-layer structure. We choose
these constraints in correspondence to physically intuitive scenarios, focusing on the exponential
behavior of the mode into the superstrate layer of the structure and the direction of travel of the
mode on the substrate side. This allows straightforward connection to the K-R experiment. We
focus on two such scenarios that have particular relevance to K-R experiments: Case (1), when the
mode is evanescent into layer L and incoming in layer 1, and Case (2), when the mode is evanescent
into layer L and outgoing in layer 1 (see Fig. 2). This corresponds to solving

M1,1(β, α) = 0

s.t. Im(kzL) > 0 and Re(kz1) < 0

for Case (1) and

M1,1(β, α) = 0

s.t. Im(kzL) > 0 and Re(kz1) > 0

for Case (2). We further classify a scenario that is reciprocal to Case (2) as Case (3) (see Fig. 2),
which corresponds to solving

M1,1(β, α) = 0

s.t. Im(kz1) > 0 and Re(kzL) > 0.

However, Case (3) is not generally compatible with K-R experiments because of the evanescent
structure into the glass. As such, we will not focus in detail on the Case (3) modes in this paper.
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Figure S2: Schematic of conditions on wavevectors in dielectric layers that the Case (1), Case (2),
and Case (3) modes. Case 1, which is evanescent into dielectric layer 3 and has incoming waves
in the substrate, gives rise to the perfectly absorbing mode. Case 2, which is evanescent into the
dielectric layer 3 and has outgoing waves in the substrate, gives rise to the SPP supported on the
surface between layer 2 and 3. Case 3, which is evanescent into the dielectric layer 1 and has
outgoing waves in the superstrate layer 3, gives rise to a mode which has evanescent structure at
the interface between the substrate and the absorbing layer.

In practice these solutions are obtained by minimizing |M1,1(β, α)| while choosing the signs of kz1
and kzL to be such that the inequalities above are true and, of course, verifying that the solution(s)
so obtained are actually zeros of M1,1. Because of the non-zero character of both outgoing and
incoming components in the interior layers, the results do not depend on the choice of their kz
components. We employ the simplex method [4] for this purpose and for each ω a large number of
random initial guesses in β, α are tried with the simplex procedure applied to each one. In such a
fashion it is possible that one or more unique solutions might be found for each ω.

Connection of Case 1 Mode to Equations for PA Mode

In the main text, we present equations for the PA mode that are consistent with incoming wave
conditions, or driving by an external field. Here we comment on the connection to this formulation,
and the formulation above with the homogeneous equations with the Case 1 conditions on the
wavevector components.

The PA mode may be defined by satisfying the following:

M1,1(β, α) = 0

s.t. Im(kzL) > 0 and Re(kz1) < 0

This has implications for the electric field in layer 1, namely that it is proportional to

E−1 exp(i|k′z1|z) exp(−k′′z1) (9)

which is clearly an incoming wave!
Here it is important to note the following symmetry relation: ifM1,1(kz1) = 0, thenM2,1(−kz1) =

0 and similarly for kzL. However, we cannot say in general that if M1,1(kz1) = 0, then M1,1(−kz1) 6=
0.
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Recall we define the reflection amplitude as the outgoing wave amplitude in layer 1 divided by
the incoming wave amplitude in layer 1. This can be written as

r =
E−1
E+

1

=
M2,1

M1,1
(10)

provided E−1 is outgoing and E+
1 is incoming. This will only be the case when Re(kz1) > 0. Hence,

if we want to compute the reflection amplitude at the position of Mode 1, we must multiply kz1 by
-1 to obtain the proper sign convention for computing it. At this point, we can invoke the symmetry
relation written above to see that M2,1 = 0, meaning that the reflection amplitude is zero for mode
1! That is, we see that the outgoing wave amplitude is zero and there is non-zero incoming wave
amplitude.

A completely equivalent way to find this mode is to write the equations with fininte incoming
wave amplitude and 0 outgoing wave amplitude along with choosing conventions for Re(kz1) > 0
so that E−1 is outgoing and E+

1 is incoming. One writes this as(
E+

1

E−1 = 0

)
=

(
M11 M12

M21 M22

)(
E+
L

E−L = 0

)
, (11)

where an equivalent solution to mode 1 is found when

M2,1(β, α) = 0

s.t. Im(kzL) > 0 and Re(kz1) > 0.

Hence, we see that formulation we proposed in the main text for the PA dispersion that contained
a driving field in region 1 as a boundary condition is completely equivalent to the solving the
homogeneous equation under the constraint that the Re(kz1) < 0 and Im(kzL) > 0. In either case,
the solution is a mode that exists in the presence of an incoming (driving) field from region 1 and
corresponds to perfect extinction of the incoming field. The mode is in fact a zero in the reflectance
in the complex plane, and this zero influences the magnitude of reflected light measured in the
far-field or computed by the Fresnel equations along the real axis. It is the presence of this mode,
not the SPP mode, that gives rise to the minimum in reflectance measured in K-R experiments.

Results from 3-Layer structure

Consistent conclusions can be drawn from results involving a single thin metal film in the K-R
geometry, for example, a glass/gold/air structure. Fig. S3 shows results from a simulated K-R
experiment with 532 nm light resonant with the SPP mode (at 45.8◦) in panel a) and resonant
with the PA mode (at 48◦) in panel b). Consistent with the glass/germanium/gold/air structure
presented in the main text, we see that the PA mode only exists in the driven region, and that
the freely-propagating mode corresponds to the SPP mode. In Fig. S4, we again see that the
transmission amplitude maximum corresponds to the angle resonant with the SPP mode and the
reflectance minimum corresponds to the angle resonant with the PA mode. We note also that
the germanium underlayer exaggerates the disparity between the PA and SPP modes at higher
frequencies where the losses are larger (see Fig. S5).
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Figure S3: FDTD simulation of K-R excitation of SPPs on glass/50 nm Au/air structure. The
“Driven Region” and is directly illuminated with 532 nm light, whereas in the “Propagating”
region, the SPP propagates freely without illumination. The real x-component of the phasor field is
sampled 50 nm above the gold surface and fit to the functional form Acos(βx− ωt0) in the Driven
region and Acos(βx−ωt0) exp(αx) in the propagating region. In K-R excitation at 45.8◦, resonant
with the SPP mode a) and at 58◦, resonant with the PA mode b), the propagating SPP (in the
Propagating region) has a value of β in good agreement with the SPP dispersion, β = 12.77µm−1.

Comparison of Modal Solutions to Semi-Infinite SPP disper-
sions

The dispersions of the SPP and PA modes for the glass/50 nm Au/air structures are plotted in
Fig. S5a in comparison with the semi-infinite gold/air SPP dispersion. This shows the clear close
agreement between the SPP mode and the semi-infinite gold/air SPP dispersion. Similarly, the SPP
and PA modes for the glass/50 nm Au/air structures are plotted in Fig. S5b, also in comparison with
the semi-infinite gold/air dispersion. This shows that the germanium underlayer strongly perturbs
the PA mode in the higher frequency regions, but leaves the SPP mode relatively unchanged.

Finite-Difference Time-Domain Simulations

A commercial-grade simulator based on the finite-difference time-domain (FDTD) method was used
to perform these numerical K-R experiments (http://www.lumerical.com/tcad-products/fdtd/) for
simulating the K-R and leakage experiments. The permitivitty of gold is fit to data by Johnson and
Christy [5], permitivitty of germanium is fit to data by Palik [6], and a static value of 1.51 and 1.0 is
used for glass and air, respectively. To simulate the K-R experiment, a 2-D computational domain
(6 microns in x, 1 micron in z) with grid size of 1 nm in x and z. A plane-wave source is used in
the driven region. A similar setup is used to simulate the leakage experiment (3 microns in x, 1.2
microns in z). A plane wave source spanning the 3 micron region is placed above the gold film that
illuminates two r=100 nm gold spheres on the surface. A series of simulations are performed with
spacing between the NPs ranging including 0.8, 1.0, 1.2, 1.4, and 1.6 microns. Radiation in the far
field in the substrate side is collected to quantify the leakage radiation. An average is taken of the
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Figure S4: Light incident from glass substrate for structures illustrated in Fig. 2 with nearly-
resonant incident angles excites an evanescent field on the gold/air surface. The Fresnel reflection
(R) and the squared magnitude of the transmission amplitude (|t|2) for light incident from glass
side are plotted in (a). For comparison, the electric field intensity (|E|2) of the evanescent field 10
nm above the gold surface is computed by the FDTD method and plotted, showing that it very
closely follows |t|2. FDTD is also used to numerically calculate the reflection of the structure, which
is shown to be in excellent agreement with the Fresnel calculation. Note that both |E|2 and |t|2 are
normalized to their respective maximum values across the range of angles considered. The |t|2 and
R surface in the complex β − α plane at 532 nm for the glass/50 nm Au/air structure is plotted
in b), showing that the SPP mode corresponds to an infinity in |t|2 and R, while the PA mode
corresponds to a zero in R.

8



Figure S5: a) Comparison of PA and SPP modes for 50 nm gold between glass and air to semi-
infinite SPP dispersion. b) Comparison of PA and SPP modes for 4 nm Ge/ 50 nm gold between
glass and air to semi-infinite SPP dispersion.

leakage radiation from all of these calculations to simulate the ensemble average over various NP
spacings in the real experiment.

Scaling of Experimental and Fresnel Data in Fig. 3

While the Fresnel reflectance will always fall between 0 and 1, the square of the Fresnel transmis-
sion amplitude and the evanescent wave nearfield enhancement may exceed 1. Only the relative
magnitudes are important to our arguments, particular the positions of the maxima and minima,
so we scale |t|2 and |E|2 by an arbitrary factor so that the relative magnitudes are comparable to
the Fresnel reflectance for ease of interpretation of the figures.

The intensity scale of the experimental reflectance and leakage, as well as the averaged FDTD
leakage, are also arbitrary. Furthermore, an absolute reference point indicating 0◦ in our experi-
ments cannot be identified, which leads to a potential systematic error of between −1 and 1◦ in the
reflectance and leakage. We determine the mangitude of this systematic error by aligning the exper-
imental reflectance spectrum with the Fresnel reflectance, as the two should be identical provided
the geometry and material properties of the films are known. We determine that the measured
reflectance angle must be shifted by +1◦, and we apply this shift to the leakage measurements,
as well. Finally, the experimental and simulated leakage intensities are scaled so that the local
maximum near the SPP leakage angle has an amplitude of 1. From the standard deviation of the
leakage and reflectance data samples over various cuts through the 2-D images, we estimate the
signal to noise ratio to be approximately 5.
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Figure S6: (Left) Comparison of reflectance with and without nanoparticles, demonstrating that
NPs have negligible effect on position of the PA resonance at the frequency of interest. (Right)
Comparison of experimental leakage with FDTD simulation of leakage in R-K configuration with
nanoparticles on the gold surface (FDTD Leakage a), as well as FDTD simulation of leakage in
R-K configuration on a bare gold surface (no nanoparticles, FDTD Leakage b). The nanoparticles
serve mostly to broaden the leakage signal. While the leakage maximum is shifted by +3 degrees
by the nanoparticles (47.5◦ compared to 44.7◦), the maximum is still distinct from the reflectance
minimum at 54◦. The simulations for FDTD Leakage b used a dipole source to couple into SPP
modes.

Effect of nanoparticles on Reflectance Spectrum

We measured the reflectance of the gold/germanium substrate with and without the nanoparticles
to confirm that the presence of nanoparticles does not significantly affect the position of the PA
resonance.

Further distinction between SPP and PA modes

In the examples presented in the main text, both PA and SPP modes can be found. Indeed, the
mode we identify as the PA mode has certain commonalities with the SPP mode, as can be seen
with the charge-density oscillations evident in the fields in Fig. 4. However, we maintain that the
PA phenomena can be observed in cases when SPPs cannot. We consider examples of PA modes
reported by Capasso and co-workers in Ref. [7,8], which involve a structure of optically thick saphire
with a 180 nm layer of VO2 with air above, and optically thick gold, coated with a 4 nm layer of
germanium with air above, respectively. Both can be analyzed in a similar fashion as the modes we
present in our work. Here, one finds a zero in the reflectance in the complex plane of wavevector
components (beta and alpha, in our notation), which is how we define the PA mode. The positions
of this mode is associated with reflectance minima as measured experimentally or computed via the
Fresnel equations. We rule out SPPs as influencing the reflectance minima for two reasons for these
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Figure S7: Plot of s-polarized reflectance and transmission amplitude surfaces, along with Fresnel
reflectance for optically thick Saphire coated with 180 nm VO2 illuminated 11.75 micron light from
air above. The near perfect absorbance in this structure is due to the presence of the PA mode,
as defined by the zero in R as a function of β and α, and is not due to the presence of an SPP
mode, which is prohibited for two reasons: the excitation source is within the air light cone, and
the excitation source is s-polarized. Note the Fresnel reflectance minimum occurs at θ = 0◦, or
β = 0.0µm−1. The mapping between β and θ is given by θ = sin−1( βk0 ) where k0 = 0.55µm−1.

particular instances: (1) The reflectance minima are found when illuminating from the air side,
meaning they are inside the air light cone, and (2) the reflectance minima (and the PA modes) can
be found with both p- and s-polarized excitation sources. Both (1) and (2) are incompatible with
SPPs which, by definition, exist outside of the air light cone, and cannot be excited by s-polarized
light. Representative figures for the s- and p-wave modes in Ref. [7] are given in Fig. S7 and S8.
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Figure S8: Plot of p-polarized reflectance and transmission amplitude surfaces, along with Fresnel
reflectance for optically thick Saphire coated with 180 nm VO2 illuminated 11.75 micron light from
air above. The near perfect absorbance in this structure is due to the presence of the PA mode, as
defined by the zero in R as a function of β and α, and is not due to the presence of an SPP mode,
which is prohibited because the excitation source is within the air light cone. Note the Fresnel
reflectance minimum occurs at θ = 9◦, or β = 0.08µm−1. The mapping between β and θ is given
by θ = sin−1( βk0 ) where k0 = 0.55µm−1.
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