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Plots of Global Hot-Carrier Distributions

Figure S1: Snapshots of changes in occupation of each orbital in the active space of the PIW
Au NC model as a measure of instantaneous hot carrier distributions. The change in orbital
occupation is computed from elements of the time-dependent one-electron reduced density
matrix (1RDM) relative to their initial value, Dp

p(t)−Dp
p(t = 0) for several timepoints in the

simulation.

Hot-carrier dynamics in hybrid Ag/dielectric nanostruc-

tures
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Figure S2: Snapshots of changes in occupation of each orbital in the active space of the PIW
Pt NC model as a measure of instantaneous hot carrier distributions. The change in orbital
occupation is computed from elements of the time-dependent one-electron reduced density
matrix (1RDM) relative to their initial value, Dp

p(t)−Dp
p(t = 0) for several timepoints in the

simulation.

Electronic structure of metal nanocubes

For cubic metal nanoparticles, we approximate the one-electron orbitals as energy eigenstates

of the particle-in-a-cubic-well. For a particle confined by a cubic well with length L, the

potential is 0 when x < L, y < L, z < L and infinity otherwise. The energy eigenstates have

the form

ψnx,ny,nz =
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The energy eigenvalues have the form

εnx,ny,nz =
h̄2π2
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Figure S3: Three regimes for light-matter interactions leading to unique spatial and temporal
shaping of the incident field, and the corresponding impact on electronic dynamics in a
L = 2nm PIW Ag nanocube. Plots of the near-field enhancements (|E|/|E0|) are shown for
the Ag NC LSPR (λ = 400nm, Panel (a)), a Fabry-Perot resonance of a d=270nm dielectric
nanosphere decorated with Ag NCs (λ = 397nm, Panel (b)), and a Whispering Gallery
Mode resonance of a d=685 nm dielectric nanosphere decorated with Ag NCs (λ = 493nm,
Panel (c)). The extinction spectra of these three structures are shown overlaid with the
dipole-allowed transitions in the PIW model of the Ag NC, showing strong overlap between
these transitions and the scattering resonances of the d = 685nm dielectric nanosphere
(Panel (d)) with only partial overlap between the Ag LSPR and dipole-allowed transitions
in the PIW model. The change in orbital populations (Dp

p(t) − Dp
p(t = 0)) is computed to

measure hot-electron and hot-hole generation. Both dielectric scattering resonances show
more efficient generation of hot-electrons (Panel (e)) and hot-holes (Panel(f)) compared
to LSPR in this case.
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The transition dipole operator can be decomposed into its components,

µ̂ = µ̂x i + µ̂y j + µ̂z k. (3)

Given this model, the number of electrons for a given material can be estimated as

Ne =
L3

3π2

(
2mEF

h̄2

)3/2

(4)

where EF is the experimental Fermi energy for the bulk material of interest. We assume

close-shell systems in all cases and round to the next highest integer value of Ne. Similarly,

the Fermi energy in our model can be defined as

EPIW
F =

h̄2

2m

(
3π2Ne

L3

)2/3

, (5)

where EPIW
F will often be slightly larger than the bulk value of the Fermi energy given that

Ne in the above expression will be rounded to the next highest integer.

The transition dipole integral components can be evaluated analytically, for example, the

x-component has the form

〈ψnx,ny,nz|µ̂x|ψnx′,ny′,nz′〉 = e δny,ny′ δnz,nz′
L(π(nx − n′x)sin(π(nx − n′x)) + cos(π(nx − n′x))− 1)

π2(nx − n′x)2

−e δny,ny′ δnz,nz′
L(π(nx + n′x)sin(π(nx + n′x)) + cos(π(nx + n′x))− 1)

π2(nx + n′x)2
,

where µ̂x = −ex. Analogous expressions can be obtained for expectation values of µ̂y and

µ̂z.

We order the orbitals by a single index p such that εp+1 ≥ εp; that is, each ψnx,ny,nz can

be uniquely labeled ψp. Using the above expressions and following this labeling scheme, the
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diagonal matrix elements can be evaluated as

〈Φ0|Ĥ(t)|Φ0〉 =
nocc∑
p=1

εp (6)

〈Φa
i |Ĥ(t)|Φa

i 〉 =
nocc∑
p=1

εp − εi + εa (7)

and the off-diagonal matrix elements can be evaluated as

〈Φ0|Ĥ(t)|Φa
i 〉 = E(t) · 〈ψi|µ̂|ψa〉 (8)

〈Φa
i |Ĥ(t)|Φb

j〉 = E(t) · 〈ψa|µ̂|ψb〉δij − E(t) · 〈ψi|µ̂|ψj〉δab. (9)

The precise form of these matrix elements arise because of the antisymmetry of the underlying

many-electron wavefunction. It is important to note that while coulomb repulsion is not

included in our current approach, Pauli exclusion, which is an inherently many-body effect,

is enforced by the antisymmetry of the wavefunction through the Slater-Condon rules used

to derive the matrix elements in Eq. (6) through (9). Importantly, terms analogous to those

in Eq. (9) are not included in methodologies like Linear Response Time-Dependent Density

Functional Theory (LR-TDDFT) or methods that use time-dependent perturbation theory

(TDPT) to first order. In fact, setting the terms in Eq. (9) to zero yields TDPT expressions

for the rates of the CIS coefficients. The terms in Eq. (9) have an important role in the

hot-carrier dynamics in SMA because of the long lifetimes associated with the scattering

resonances, and hence, the long duration of the optical fields that drive these dynamics.

The discrepancy between is shown in Figure S4 where we perform two calculations with the

same driving field: one where the full TDCIS equations are solved, and one where the terms

in Eq. (9) are set to zero, yielding a equations of motion where only transitions between

the ground- and singly-excited configurations are considered, similar to linear-response or

TDPT-based approaches.

6



Figure S4: Comparison of hot-electron dynamics as computed from the full TDCIS method
(purple line labeled SMA Full TDCIS) and one where excited-to-excited configurations are
neglected in the spirit of approaches based on linear-response theory and time-dependent
perturbation theory to first order (black line labeled SMA Linear Response). While the two
approaches agree at short times, the long-time dynamics can show significant departure as
population accumulates in excited-state configurations. These calculations consider 685 nm
dielectric nanospheres (n=2.6) decorated with 2nm Ag nanocubes.

Figure S5: Comparison of hot-electron dynamics with from SMA with (black line labeled
SMA with SC) and without (purple line labeled SMA) a phenomenological size correction
to the dielectric function of silver in 685 dielectric nanospheres (n=2.6) decorated with 2
nm Ag nanocubes. The size corrections are described in Eq. (11) - (14) of this Supporting
Information document.
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Finite-difference time-domain calculations

A commercial simulator based on the finite-difference time-domain method1 was used to

compute the electric field, E(t) 1 Å away from the nanoparticle surface in each of the scenarios

considered. The displacement was taken along the z-axis, corresponding to the polarization

direction of incident light since the strongest near-field enhancement is expected along this

direction. A grid spacing of 1 Å in x, y, and z was utilized in a cubic region extending 1 nm

beyond the metal NP surface, and a non-uniform mesh was utilized otherwise with dx, dy,

dz ≤ 20nm. For each composite structure, a nanoparticle was placed at the surface of the

dielectric nanosphere at an angle of 20◦ with respect to the propagation axis of the incident

light. In all simulations, light propagates along the x axis and is polarized along the z axis.

The metal nanoparticles are centered at y = 0. A total-field scattered-field source was used

to illuminate the structures. The FDTD simulations were terminated when the ratio of the

total energy in the simulation volume to the total energy injected by the illumination source

falls below 10−6. Because the WGMs are higher quality factor resonances, longer time is

typically required for these simulations as compared to the plasmonic particles alone.

The resulting time-domain fields were fed into our TDCIS algorithm, allowing us to

simulate the electronic dynamics driven by rigorously-computed nearfields from scattering

and plasmon resonances, which show strong spatiotemporal modification relative to freely

propagating light. The electric field was scaled by a factor E0 ≈ 614, 000, 000 V/m so that

the peak power of the illumination source is 1015 W/m2. The electric field was sampled at

intervals of approximately 2.8 attoseconds for all simulations, which leads to a time-step

that ensures stability of the wavefunction propagation with the relevant energy scales of our

simulations. Our TDCIS scheme requires the evaluation of the electric field at intermediate

times between these timesteps, and we use a simple update based on centered-finite differ-

ences to approximate the electric fields at these times. As an example, if the electric field is

known at times t1, t2 = t1 + dt, and t3 = t1 + 2 · dt where dt = 2.8 as, and knowledge of the

field is required at some time tm = t2 +m · dt where m is non-integer, E(tm) is estimated as
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follows:

E(tm) = E(t2) +
E(t3)− E(t1)

t3 − t1
·m · dt. (10)

The optical response of Au, Pt, and Ag in the FDTD simulations utilizes permittivity

data from the work of Johnson and Christy2 (Au) and Palik3 (Pt and Ag). We assume a static

dielectric constant of 2.6 for the dielectric nanospheres in this work, which is comparable

to the visible dielectric constant of titanium dioxide. The prototype calculation of the

impacts on SMA resulting from size effects in the dielectric response of silver utilizes the

phenomenological size correction for the plasmon damping rate in nanocubes suggested by

Coronado and Schatz,4

γSC = γbulk +
AvF
Leff

(11)

where Leff = 2L/3 for cubes, where L is 2 nm in this case, we take A to b 1 and vF is

taken to be 1.39e6 m/s for silver. We incorporate γSC into a Drude model for the intra-band

contribution to silvers dielectric function,

εDrude,SC(ω) = 1− ω2
P

ω2 + iγSCω
. (12)

We take ωP and γbulk from a Drude+2Lorentz fit to the Palik data between 200-800 nm;

specifically, h̄ωP = 8.73eV and h̄γbulk = 0.075eV . We infer the inter-band contribution to

the dielectric function from the bulk experimental data and from the bulk Drude fit,

εinter(ω) = εPalik(ω)− εDrude,bulk(ω). (13)

Finally, the dielectric function used for the size-corrected calculations is defined as

εSC(ω) = εinter(ω) + εDrude,SC(ω). (14)

Results from these prototype calculations are shown in Figure S5.
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