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We provide evidence that student representations can serve different purposes in the 
context of classroom problem solving.  A strategy used expressly to solve a problem 
might be represented in one way, and in another way when the problem is generalized or 
extended, and yet in another way when the solution strategy is explained to peers or a 
teacher. We discuss the apparent long-term memory implications this has regarding the 
preferences that students have for their original versus later developed representations, 
and how these preferences relate to the use of representational flexibility in classroom 
settings. 

Introduction  
We discuss the development, in a classroom setting, of flexibility of 
student mathematical representations. Through analysis of a case study of 
a middle school girl and several of her peers, as they solve a mathematics 
problem, we suggest that student presentations develop greater flexibility 
in response to questioning or a need to better explain logical and 
mathematical aspects of procedures and representations to peers and 
teachers. Further, we suggest that these developing representations are 
often of different types, showing characteristics that reflect the 
circumstances under which they were developed. As a result, students 
often revert to earlier or less refined representations in novel settings, 
even when more sophisticated representations have been developed for 
other purposes.  
 
We argue that as students solve problems, and engage in conversations 
with peers and teachers about their solution procedures, they often, quite 
naturally make comparisons and reflect on their own procedures in 
response to questions, comments or requests for clarifications and 
justifications. In such situations, a student has, at the very least, two 
cognitive problems to deal with: to solve a particular mathematical 
problem, and to convince (themselves as well as) peers and teachers that 
they have a viable procedure or solution. As a result of such discussions, 
students may be stimulated to create representations that may better 
reveal their thought process especially when they need to clarify or defend 
their reasoning. These representations then can become objects of 
scrutiny in their own right, and may be used in other settings and at other 
times. Critically, these representations can be modified to apply to new or 
different problem situations. Thus, the representations are, in effect, 
encapsulations of reflections on prior memories of acting, and allow a 
considerable amount of prior thought and action to be unpacked as and 
when required by the student.  
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Students reflect on their actions, and create new memories, as a result of 
many things.  In this case we note in particular, challenges exerted upon 
them to justify or defend their ideas by others in their classrooms. As they 
reflect on their actions, their representations may evolve into increasingly 
more sophisticated versions. However, old representations are not simply 
abandoned - rather, new representations are formulated and reformulated 
as students modify, adjust, and tinker with existing representations in 
response to a new problem or questioning by others. This evolution of 
representations, we will argue, is associated with the growth of 
understanding. From this perspective, learning with understanding is 
related to the evolution of flexible representational systems that allow 
students the possibility of successfully addressing novel problems, utilizing 
not just their prior knowledge, but their prior representational re-
organization of that knowledge, obtained through introspective comparison 
of prior memories of action. 

Theoretical Framework 
 
1.1 Overview 
Our basic theoretical perspective is that the evolution of individual student 
representations is greatly influenced and stimulated by classroom 
interactions, peer to peer, and between student and teacher. Interactions 
are commonly in the form of a request to explain a line of reasoning or 
aspects of a particular representation. As students figure out ways to 
modify their representations and explanations, two main things become 
apparent. First, their use of memory becomes more declarative. This is not 
surprising since students are stimulated to explain by means of words, 
diagrams, gestures, and calculations, how their reasoning works and what 
their representations mean. However, the fact that this is not surprising, 
does not mean that it is unimportant, quite the contrary: we believe that a 
basic goal of teaching is to help students become more declarative in their 
reasoning, and in their approaches to problem solving, yet it is a common 
experience at all levels of mathematical instruction that this is often not 
achieved with any great degree of success (ref. Stigler and Heibert, 1999). 
We suggest that classroom interactions, particularly those involving 
student-to-student or teacher-to-student questioning, plays a critical role in 
stimulating students to produce representations that are based on 
declarative memories.  
 
One might imagine that the case study used in this paper could be 
completely described within Karmiloff-Smith’s work, in particular, her 
representational redescription theory (Karmiloff-Smith, 1995). Indeed there 
are some important similarities including those that are described in the 
theoretical framework below.  We will also argue that the Karmiloff-Smith 
notion of representational redescription may not fully account for all of the 
representational evolution that we note below.  We will address these as 
they arise in the results and discussion sections 
 
1.2 Flexibility in mathematical thought 
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Flexibility is often described as the capacity to exhibit a variety of novel or 
invented strategies or retrieve and use a large repertoire of strategies for 
solving problems (e.g. Heirdsfield and Cooper, 2002; Carey, 1991; Klein & 
Beishuizen, 1994; Vakali, 1994; Beishuizen et al, 1997; see also Shore, 
Pelletier & Kaizer, 1990). Flexibility, accordingly, may arise from a rational 
choice between or among several types of strategies depending on the 
particular problem at hand (Threlfall, 2002). 

 
Verschaffel, Luwel, Torbeyns and Van Dooren (in press) state that the 
term flexibility is primarily used in the literature to refer to switching 
smoothly between different strategies. They use the dual term 
'flexibility/adaptity' as an overall term: using 'flexibility' for the use of 
multiple strategies, and 'adaptivity' for making appropriate strategy 
choices. Hatano (2003, as cited in Verschaffel et al., in press) describes 
adaptive expertise as "the ability to apply meaningfully learned procedures 
flexibly and creatively" and opposes it to routine expertise, i.e. "simply 
being able to complete school mathematics exercises quickly and 
accurately without understanding". Verschaffel, et al. (in press) emphasize 
that the opposition between routine and adaptive expertise in mathematics 
education applies to mathematical strategies and procedures, as well as 
other aspects of mathematical expertise, such as representational acts. 
 
Flexibility in mathematical thought is often missing or poorly explained in 
many definitions of mathematical learning and knowledge. Nonetheless, 
such flexibility is important for many reasons. For example, Star and Rittle-
Johnson (in press) note that:  
 

 “Students who develop flexibility in problem solving are more likely 
to use or adapt existing strategies when faced with unfamiliar 
transfer problems and have a greater understanding of domain 
concepts.”(p. 2) 

 
Gray and Tall (1994) emphasize that flexible thinking involves an ability to 
move between interpreting notation as a process to do something 
(procedural) and as an object to think with and about (conceptual), 
depending upon the context. Thus, flexibility, as used in this manner, 
provides a pathway for students to move from the procedural to the 
conceptual.  
 
Our original path to flexibility came from a study of the literature on human 
memory systems (ref. Tulving & Craik, 2000), much knowledge of which is 
of relatively recent origin. Our original formulation of flexible mathematical 
thinking came from a desire to understand why, on the occasions in which 
students could recall facts and procedures, they often were not able to 
utilize them in novel settings.  
 
Our understanding of flexible mathematical thinking may best be 
described as an ability of learners to perform a reorientation in relation to 
context, place, or person, and a change in their focus of attention as they 
encounter novel problem settings (Warner et al, 2002). In this paper, we 
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argue that this re-orientation is a feature of long-term declarative 
knowledge, and it is to this point that we direct our attention in the sections 
that follow. 
 
Before continuing, readers may note a similarity between our notion of 
flexible mathematical thought and the idea of transfer, attributed to 
Thorndike & Woodworth (1901), elaborated by Perkins and Salomon 
(1992), and related to problem solving by Ormrod, 2004. In some ways, 
our use of flexibility in mathematical thought is very closely related to the 
idea of transfer. This is particularly so as we consider how students 
connect facts and procedures and use them in novel situations. The 
connection between transfer and flexibility is, however, quite complex and 
worthy of a study in its own right. 

1.3 Representational flexibility and declarative knowledge 

Procedural memory facilitates procedural learning, which is characterized 
as acquisition of specific skills and habits, an important part of 
mathematical problem solving. An important feature of procedural memory 
is that the knowledge so acquired is often demonstrated in action, and 
only through actions similar to those used in the learning of the skill or 
habit (Cohen 1984; Eichenbaum 2002). One may infer, therefore, that 
procedural memories tend to be less flexible than conceptually based 
memories in that they only become manifest in restricted settings closely 
resembling those in which they were formed (Eichenbaum 2002).  This 
may well be because procedural knowledge is more implicit, and 
consequently, less explicit: it is procedural and not necessarily declarative. 
Such knowledge is knowledge-in-action and the associated memories are 
those of carrying out certain actions, but not necessarily, memories of 
reflecting on those actions in order to explain them to someone else.  
 
Flexible mathematical thinking involves transfer of the memories of 
mathematical actions to another part of the human memory system, one 
involving relationships between prior memories. This part of the human 
memory system is referred to as declarative memory, largely because we 
exhibit it not through actions, per se, but through declarations (ref. Squire 
& Kandel, 2008). In essence, these declarations, which can be speech, 
drawings, or gestures are representations of thought. Declarative memory 
facilitates relational learning, which is characterized as acquisition of 
relationships between recalled facts or episodes. Declarative memory 
involves the comparison of recollections, and a potent effect of this 
comparison is the possibility of drawing inferences about recollections. 
This point cannot be stressed too strongly: declarative memory facilitates 
thinking and reasoning through the drawing of comparisons. What makes 
this aspect of declarative memory powerful is the possibility of novel 
insights into relationships. This feature of declarative memory is what 
gives rise to representational flexibility – the inferential use of memory in 
novel situations. We will see, from the examples given below, that 
students are eminently capable of taking their own experience, turning it 
into an object of reflection, and representing their thoughts in novel ways 
that assist them to solve problems in new settings. This type of activity is 
in sharp contrast to the behavior of students who repeat taught, or 
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learned, actions, such as factoring a quadratic, or carrying out a 
subtraction, in a fixed, automatic way, with little or no understanding of 
why or how the procedure works. Of course, a reader might observe that 
there seem to be many students who seem eminently incapable of taking 
their own experience, and using it as we have described to assist them to 
solve problems in new settings. Our point, in this paper, is that a setting of 
the classroom in which students are free and encouraged to ask other 
students questions, extend the problem in ways that encourage sense 
making, and justify their conjectures and ideas, stimulates this type of 
flexibility of thought. 
 
A potent example of declarative memory and declarative knowledge is the 
representation of Pascal’s triangle as a branching road system, 
constructed by a grade 6 student, David (Warner et al, 2002). His 
representation was dynamic – that is, involving movement in time – even 
though we see in figure 1, below, only the static drawing.  
 

 
Figure 1. David’s dynamic representation of Pascal’s triangle 

 
David represented Pascal’s triangle as a process in which one came to 
forks in the road and dropped blocks – a certain color if the fork was to the 
left, another color if it was to the right. This dynamic representation linked 
Pascal’s triangle, which he heard about from another student, with building 
and counting block towers. David’s representation of Pascal’s triangle was 
dynamic and memorable enough that he could use it in another situation 
that reminded him of the block tower building. He took his dynamic 
Pascal’s triangle representation and modified it so as to get a contextually 
dependent model that allowed him to systemically count objects consisting 
of linked cubes of two different colors.  
 
It is generally believed, though by no means certain, that declarative 
memories have their basis in episodic memories (Eichenbaum 2002; 
Tulving 1985). The latter are memories of episodes such as shaking 
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hands with someone, being in a classroom at a particular time on a 
particular day, or recalling what the teacher wore on a particular day. 
However, it seems that the dynamic representation David built of Pascal’s 
triangle was not simply a combination of related prior episodic memories. 
There appeared to be a genuinely creative synthesis in David’s 
constructed representation. Out of an analogy, or metaphor, of Pascal’s 
triangle with a road system, David built a dynamic symbolic representation 
of Pascal’s triangle that made sense to him in terms of his own prior 
memories. Then, when he had that dynamic symbolic tool he was able to 
utilize it, and draw new conclusions, in situations that were different, but 
which stimulated its recall by being sufficiently similar. This, for us, is 
representational flexibility in a nutshell.  
 
1.4 Representational redescription 
On the face of it, the changes in representations we describe in this paper 
might seem to be well described by appropriate use of Karmiloff-Smith’s 
representational redescription (RR) theory (Karmiloff-Smith, 1994, 1995). 
Representational redescription is a hypothesized process in which 
cognitive information becomes progressively and explicitly available to a 
person: 
 

: “ ….representational redescription, turns IMPLICIT information 
embedded in special-purpose procedures into EXPLICIT knowledge 
but which is not yet available to conscious verbal report.” (Karmiloff-
Smith, 1994; author emphasis).  

 
 Using the ideas and findings of the neuroscience of memory systems 
(Tulving & Craik, 2000), we might reformulate this as: representational 
redescription is a process in which relatively implicit memories become 
progressively reformulated as explicit memories. Declarative memory – the 
memory exhibited in talking about, drawing, or otherwise representing a 
prior event or recalled thing – is, by its nature, explicit. It is recall at the 
higher levels of the theory of representational redescription. RR is, 
however, a specific theory, and not a generic term for representations that 
change in description: it is a theory of development useful for providing 
insights into adult representational structure through an understanding of 
how children’s representations change over time (Karmiloff-Smith, 1995). 
The representations we deal with here are at the higher levels of Karmiloff-
Smith’s theory: they are for the most part explicit, presented by students in 
full consciousness, and capable of being discussed and modified 
consciously: this places them, at a minimum, at Karmiloff-Smith’s E3 level 
of representational redescription (Karmiloff-Smith, 1995). The 
representational modifications we report on are generally brought about by 
the stimulus to explain thinking to other students or teachers, and there is 
no strong sense in which we are dealing with a developmental issue as we 
might see with younger children. The process we see and describe has 
some similarities to representational redescription as described by 
Karmiloff-Smith. However, Karmiloff-Smith’s use of that term indicates that 
we are describing a somewhat different phenomenon: the students in our 
study are driven, at least so we believe based upon our analysis, by 
exogenous demands to reformulate their representations. As they do so, 
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their representations usually become more explicit and more likely to be 
reflected on consciously and verbally. The stimulus from other students is 
critical. In our observations, we are seeing something somewhat different, 
or certainly in addition to the developmental issue addressed by 
representational redescription. Certainly the underlying phenomena of 
representational change seems quite similar especially when 
considering that Karmiloff-Smith's work also addresses the issue of 
conscious versus. unconscious access to strategies and 
representations.  However, our emphasis, involves changes in 
representation, and a developing awareness of the nature of those 
representations through participation in a social network, in which 
questioning from other students provides a critical stimulus to reflect on 
exiting representations and modify them in response to that questioning. 
This is somewhat different to the main emphasis of representational 
redescription: 
 

“The RR model is fundamentally a hypothesis about the specifically 
human capacity to enrich itself from within by exploiting knowledge 
it has already stored, not by just exploiting the environment. 
(Karmiloff-Smith, 1995, p.192) 

 
Certainly internal changes take place when students begin to alter their 
representations. However, the process we observe is not wholly internally 
driven: it is, rather, largely driven by social need and social demands of 
other students, and teachers, and in this sense the observations and 
analysis we provide here add to an understanding of representational 
flexibility at a level beyond the highest levels of the representational 
redescription theory. Our data provides a clue as to what stimulates 
students to greater representational flexibility when they are already at a 
high level according to representational redescription theory. 

2. Overall plan and evaluation of data 
Our basic plan was to document and analyze the evolution of student 
representations, and to analyze where and when we saw evidence of 
representational flexibility. In particular we made note of places in space 
and time where students: 

• Modified existing representations. 
• Asked questions that seemed to contribute to a modification or 

change in representation 
• Responded to other students’ or the teacher’s requests for 

explanations. 
• Posed or shared extensions to the problem.  

Where one or more of these episodes occurred, we analyzed whether the 
student’s actions or responses were largely procedural, and the 
representations were more or less a record of working, or appeared to be 
more flexible in that they were created to explain and apply to a more 
general problem situation. 
 
Additionally, we analyzed student responses for evidence of knowledge 
why something was true, and distinct from knowledge that it was true. 
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Instances of explanation why or justification were taken as evidence that 
students were adopting a more flexible approach to the problem solution, 
by seeing a rationale for a more general answer to the problem.  
 

3. Methods 
The study took place over a six-month period. It was the result of a 
professional development project1 whose goal was to help teachers use 
instructional methods that helped students learn mathematics with a 
deeper level of understanding (see Schorr, Warner, Gearhart and 
Samuels, 2007, for a more complete description of the project). In short, 
district teachers participated in workshops and attended courses with 
university faculty and research specialists, and they received follow-up 
visits in their classrooms by the university partners. These visits were 
designed to help teachers plan, implement, and reflect on classroom 
activities in their own classrooms. In the case of this study, such visits 
occurred approximately once a week as part of the teacher’s regularly 
scheduled 8th grade math class. Each class was approximately 50 minutes 
in duration.  
 
During the course of the time period in which this study took place, many 
different tasks were introduced to the students. In most instances, but 
particularly when the University partners visited the classroom, the 
students worked in groups of 3-5 (arranged by the teacher). Generally 
speaking, the university researcher (UR) and the classroom teacher jointly 
taught the class. Consistent with the goals of the project, the students 
were encouraged to talk about ideas, record the ideas; make conjectures, 
question each other, discuss disagreements, justify and defend solutions; 
generalize and extend their ideas, and revisit ideas over time.  
 
The setting for this study was an eighth grade class in an urban school 
district. The class consisted of 32 students, with equal numbers of boys 
and girls. The class was considered to be average in terms of academic 
achievement. In this paper, we focus on the representational flexibility of 3 
students. The first two, Aiesha and Bianca, worked together as a member 
of a group, along with Brittney and Edgar. The third student, Dominique, 
was one of the students who questioned them during their presentation to 
the class, along with other students (eg. Shaniqua), about their 
representations. 
 
Problem Tasks: The students initially explored a task entitled the 
“Handshake Problem” (adapted from a similar task that appeared in NCTM 
2000), along with extensions of the task, and two additional sessions took 
place, six months later, in which the students explored a problem similar in 
structure, (“Yakia’s Slumber Party”).  

                                            
1 The material contained herein is based upon work supported by the U.S. National Science 
Foundation (NSF) under grant numbers 0138806 (The Newark Public Schools Systemic Initiative 
in Mathematics) and ESI-0333753 (MetroMath: The Center for Mathematics in America’s Cities). 
Any opinions, findings and conclusions or recommendations are those of the authors and do not 
necessarily reflect the views of the NSF, Rutgers University or the Newark Public Schools. 
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The Handshake problem is as follows: John is having a Halloween party. 
Every person shakes hands with each person at the party once. Twenty-
eight handshakes take place. How many people are at the party? 
Convince us.  
 
 
This task was chosen because it provided an opportunity for students to 
engage in mathematical discovery and problem solving. The problem 
provided opportunities for students to find solutions with differing degrees 
of sophistication and knowledge. Further, it provided an opportunity for 
teachers to consider how students interact with each other as they solve 
problems, and what the teacher’s role could be in this process.  
 
The students also explored two extensions of the problem: 
Part 2: There are 11 people at the Thanksgiving party. Each person 
shakes hands with every person at the party once. How many handshakes 
take place? Convince us. 
Part 3: There are 101 people at the Holiday party. Each person shakes 
hands with every person at the party once. How many handshakes take 
place? Convince us. 
 
These extensions of the problem, which occurred over time (at least one 
week apart), provided an additional opportunity for students to build a 
solution that could be generalized to a larger class of problems involving 
similar structures. In this case, an example of a generalized solution could 

be .  
 
Six months after the initial problem was presented, the class was given the 
following problem (referred to as the Yakia’s Slumber Party Problem),  
 
On the night of Yakia’s slumber party there was a terrible storm. The main 
road washed out, so Yakia and her 14 girlfriends (15 girls altogether) 
decided to have a “Phone party” instead. The idea was for each friend to 
talk to every friend at the party on the telephone. With all of the 15 friends 
taking part in the phone party, what was the fewest number of calls that 
could be made so that every person talks to every person in the phone 
party? 
 
This report involves 10 classroom sessions over the course of 6 months (8 
focusing on the Handshake problem and several extensions, posed by the 
teacher and students, and 2 focusing on the Yakia slumber party problem 
and extensions, posed by the students). During each class session, two 
cameras captured different views of the group work, class presentations 
and associated audience interaction. In addition, careful field notes were 
taken after each session. Student artifacts were also collected as part of 
the data set. 
 
Descriptive summaries were written for all ten sessions. Instances that 
involved modifying existing representations, asking questions that seemed 
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to contribute to a modification or change in representation, responding to 
other students’ or the teacher’s requests for explanations, posing or 
sharing extensions to the problem, were selected for deeper analysis. 
These were then transcribed as needed. Such instances were identified as 
an “episode” in the present study.  
 

4. Results  

We begin our analysis by documenting how Aiesha, a 13 year old girl 
solved the Handshake problem, as posed above. We will make the case 
that her representations evolved over the course of the sessions, as will 
be seen below, as a consequence of many things, most notably her 
interactions with peers. Throughout the analysis, we include instances of 
her peer’s solutions and representations as well. 

4.1 Aiesha’s initial representation 

Aiesha’s first action was to actually shake hands with her group members. 
From there, she and her peers spoke about people shaking hands without 
being tied to the action of actually shaking hands. Aiesha and her peers 
then discussed how they would count the handshakes, addressing the 
question: when two people shake hands, is that one handshake or two? 
We believe that this provides at least some evidence that their thinking 
was based on episodic memories of actually shaking hands. This simple 
point is not a trivial one. There is debate in the memory research 
community whether declarative representations are necessarily based on 
episodic memories (Eichenbaum, 2002). As obvious as this might seem at 
first encounter, to a reflective mind it is not at all apparent that episodic 
memories form a basis for later declarative memories. Here, however, we 
see Aiesha and her friends acting out a scene in which they literally carry 
out handshakes, and then use that as a basis for discussion. 
 
Aiesha’s first representation (see figure 2) involved a “picture” which was, 
it would seem, her way to represent, via short hand, a drawing of people 
shaking hands without actually drawing people. In this case, the circles 
were stand-ins for people, and the lines joining them a depiction of 
handshakes. Again, this representation seems to be based on recalled 
episodes of people shaking hands. There is nothing in this representation 
of Aiesha’s to suggest that it was anything other than an inscription, a 
record of her work on the problem, much as a student might carry out a 
calculation on paper. 
 
After drawing this representation, Aiesha tried several different possibilities 
for the number of people present at the party, along with an associated 
multiplication number sentence for each. This approach appeared to be 
based upon her making an ‘educated’ guess. Her representation in figure 
2 was based upon her assumption that there might be 14 people at the 
party. She then explained, in response to a question by the UR, why she 
multiplied 14 by 13, for example, how each of the 14 people would shake 
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hands with the other 13 people, drawing 13 loops from the first circle, 
which represented a single person at the party, to each of the remaining 
13 circles, as in fig. 2. When she multiplied 14 by 13, the result was 182 
handshakes, which was clearly too many handshakes for the problem 
scenario. She also tried the same approach imagining a 7 person party, a 
9 person party, and an 8 person party.  
 
During this episode, Aiesha went from the action of actually shaking hands 
to imagining people shaking hands. Next she constructed a pictorial 
representation of this, using circles to represent people and loops to 
represent handshakes. Finally, she wrote an associated numerical 
inscription, which in this case was 8x7.   In effect, Aiesha had created an 
image – a representation—of a possible solution process. 
 
Aiesha used this pictorial representation to construct the idea of 
multiplying the total number of people by one less than the total number of 
people to arrive at the number of handshakes. She provided a reason for 
her number sentence by explaining that each of the people or “circles” 
must shake hands with the remaining number of people. At this point, we 
infer that she had an image of the rest of the handshakes taking place and 
no longer needed to draw the rest of the loops to show it. Every time she 
multiplied, however, she arrived at double the number of actual 
handshakes in the solution, and consequently, she concluded that there 
was no answer to the problem. 
 

 
Figure 2. Aiesha’s initial strategy for finding the number of people for 28 handshakes. 
 
At this point, another student in her group, Edgar, arrived at an answer of 
8 people at the party, using his own method. When Edgar shared his 
solution with her, Aiesha noticed that she could get the same answer if 
she divided her answer (56) for an 8 person party by two. At this point, she 



12 

proceeded to divide all of her products by 2 and concluded that her 
solution for the 8 person party gave her 28 handshakes. Aiesha noted that 
she did not know why it worked, only that it worked. 
 
What we see in this episode is apparently a record of calculation, based 
on a pictorial schema whose basis lay in a recalled episode of actually 
shaking hands. We see a schematic representation of handshakes, and a 
systematic attempt at counting them, without a realization that she was 
counting each handshake twice. The modification Aiesha made to this 
representation was prompted, we believe, by Edgar’s answer and was 
largely procedural – dividing the supposed number of handshakes by 2 
(along with her other products) to get an answer that agreed with Edgar’s 
for the number of people at the party. This is just one piece of evidence 
regarding the role of peer-to-peer interaction in Aiesha’s representational 
evolution. 

4.2 An extension to the problem and a challenge from a peer: Aiesha 
is confronted with a need to extend her representation 

Two weeks later, the students were presented with an extension of the 
original task involving 11 people. When Aiesha was introduced to this 
extension, she was able to spontaneously recall and use her original 
representation involving circles and loops (below). She drew eleven 
circles, connecting the first circle to the other ten circles with loops (see 
figure 3). Then she multiplied eleven by ten. 

 

  
Figure 3. Aiesha’s initial strategy for finding the number of handshakes when 11 people 
are at the party. 

 
At first Aiesha did not recall the reconciliation with Edgar’s answer for an 8 
person party in which she divided her previous answer by two, however as 
is indicated in figure 3, she ultimately realized that she needed to divide by 
two. We describe that process below. 

3.3. Aiesha’s modifications of her representations in response to the 
questions of her peers and researcher 

 
After Aiesha drew the 11 circles, with the 10 loops (see above), along with 
the multiplication of 11 by 10, she recalled that she needed to divide the 
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product of the two numbers, but was not sure what to divide it by. At this 
point, the UR questioned her about the method she used for solving the 
original task—thereby eliciting in Aiesha memories of the previous 
problem solving session in which she solved a related problem.  In 
response, Aiesha re-explained her number sentence for an 8 person party, 
and remembered that she should divide the product by 2. That dialogue 
appears below: 
 

UR: What were you dividing one hundred and ten by here? [pointing 
to a division number sentence that Aiesha wrote, with 110 under a 
bracket.] I remember you did that last time, too (see figure 3).  
[Aiesha tried to divide 110 by eleven, using her calculator, then by 
ten.] 
Aiesha: That’s not it. 
UR: What did you do when you solved for an eight person party? 
Aiesha: Eight times seven, then it gave me fifty-six, then I divided... 
Oh, two into fifty-six. So, it’s supposed to be one hundred and ten 
divided by two [She entered this into her calculator]. It’s fifty-five. 
[She wrote 110 divided by 2 on figure 3].   

 
Through questioning by the UR, Aiesha gradually recalled her procedure 
for the 8 person party, relating it to the 11 person party. Again, Aiesha 
seemed to be operating procedurally, with a method that worked in a 
previous situation—and a memory stimulated by the UR.  
 
The UR then asked Aiesha to explain why the method worked: 
 

UR: I’m curious about this [pointing to Aiesha’s number sentence at 
the top of figure 3], right over here. Why is this working? It worked 
again. Why? Lets think, originally, why were you multiplying eleven 
by ten? 
Aiesha: Because, all right, there’s eleven people, and one person 
shakes ten people’s hands. So, instead of drawing all of those 
squiggly lines, I multiplied ten times eleven. So this part should be 
ten, ten, ten, ten, ten, like that [pointing to the circles on the top of 
figure 3]. 
UR: So, you are saying that each of these people [pointing to the 
circles] would shake ten hands? Why don’t you write that? [Aiesha 
writes 10 above each circle – see figure 3]. 

 
However, despite the UR’s rather persistent prompting, Aiesha was not 
able to provide a convincing reason as to why she divided by two. It was 
not until several other students questioned her that Aiesha came up with a 
reason, as will be described below.  
 
Brittney, Aiesha’s group partner, questioned how Aiesha’s picture – circles 
with loops, could be useful in finding the final solution. She didn’t 
understand how such a depiction could possibly account for all of the 
handshakes, especially since all of the loops extended from only the first 
circle.  
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Brittney: When you did the demonstration you did up there [referring 
to Aiesha presenting figure 2 to the class] I didn’t get it.  
Aiesha: What do you mean? 
Brittney: All of these lines [pointing to the loops on figure 2]. What 
about these people [pointing to all of the circles on the right]? 
Aiesha: I’m going to show you all. I am multiplying [writing 11 x 10 = 
110]. 
Brittney: This person [pointing to the first circle on the left] is 
shaking hands with all of these people [pointing to the circles on the 
right], and this is all of his shakes. Right, and how many 
handshakes is right here [pointing to the first circle to the left]? 
Aiesha: Ten. 
Brittney: And then this one [pointing to the second circle] is going to 
be nine, right? 
Aiesha: And then eight, seven, six, five, four, three, two, one.  

 
Seemingly, to address Brittney’s concerns, Aiesha looked carefully at 
Brittney’s representation, and actually used it to construct a new type of 
representation, involving a chart with letters that could represent the 
people at the party (figure 4). Aiesha, in effect, took advantage of the 
representation that Brittney had originally built (see figure 5) and modified 
it to address Brittney’s concerns. Using this newly developed 
representation, Aiesha was able to explain to Brittney that her original 
reasoning (with circles and loops) was correct. It is not clear, however, if 
Brittney was fully convinced.  
 

 
Figure 4. Aiesha’s chart for finding the number of handshakes for an 11 person party. 
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Figure 5. Brittney’s chart for finding the number of handshakes for an 11 person party. 
 
Note the critical importance of Brittany’s challenge to Aiesha.  Aiesha’s 
change in representation, we believe, indicates a certain level of flexible 
thought in that she (re)structured her knowledge to generate a 
representation that was useful to her, while simultaneously addressing the 
understanding of Brittany. This is a particularly important point. Aiesha’s 
recourse to her first solution method may have been based on procedural 
memory – her memory of what she had previously done in solving this 
type of problem, and recalled as a process of solution in action – her 
diagram may have been simply her inscription of the solution process. Her 
solution was carried out in action, and the context is not much different 
from that in which she established her original method of solution. We are 
not claiming that her knowledge was procedural and not declarative, only 
that her representation may have been simply her method in action of 
solving the problems, and without further evidence we have no way of 
knowing. In response to Brittney’s questioning however, she made a 
representational change in indicating how she knew what she knew, not 
simply that she was capable of solving the problem: she moved from 
demonstrating how to do something, and that she could solve the problem 
by producing a representation, to why her method worked by producing a 
new representation. We infer that Aiesha reoriented her thinking to 
accommodate Brittney’s question and changed her focus of attention from 
showing that she could do the problem to demonstrating why her method 
was valid. By our definition, therefore, Aiesha demonstrated the 
beginnings of flexible mathematical thinking.  
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The role of Brittney’s questioning in at least to some extent, stimulating 
Aiesha to reflect on her prior actions and represent them declaratively, not 
simply to repeat them, should not be underestimated. It would seem that 
this type of questioning on the part of one student to another plays an 
important role in prompting Aiesha to explain that her reasoning was in 
fact correct. In the process of the explanation, Aiesha moved convincingly 
from demonstrating possible procedural knowledge to demonstrating clear 
declarative knowledge, and changed her focus of attention from showing 
that to explaining why.  
 
By explaining that each letter at the top of each column “shakes hands” 
with every letter in that column, we can see that Aiesha could represent 
the handshakes, and was no longer tied to the action of showing each 
handshake. This indicates flexible mathematical thought in that she was 
able to construct a new representation, which ultimately was more useful 
to her when justifying her ideas, as will be shown below. This constitutes 
declarative knowledge, and the evidence for such knowledge comes from 
the student’s representations. These representations, in turn, become 
flexible cognitive tools that can be recalled and used in situations that 
differ from those in which the original problem was posed.  
 
As will be seen below, Aiesha and her group members were soon able to 
also use this chart to show why division by two would work.  Student to 
student questioning played a critical role in this process as well: 

 
Bianca: This person [pointing to the second circle] won’t shake ten 
people’s hands. But it says every person at the party shakes hands 
once. 

 
As Bianca questioned Aiesha’s idea (ten handshakes for each of the 11 
people). Aiesha filled in her chart as in figure 6. Ethan then noted: 
Everyone’s not going to shake everyone’s hands two times. 
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Figure 6. Aiesha’s modification of an existing representation. 
 

The other students realized that if they continued the chart to show each 
of the 11 people shaking hands with all other people, each person would 
in fact be shaking hands twice. Therefore, they crossed off half the 
represented handshakes. This prompted Aiesha to draw the horizontal line 
on the bottom of figure 4, which resulted in the construction of the chart 
(figure 6) as a way to explain why they needed to divide their answers by 
2. The students’ questions contributed to the connections that Aiesha 
made between her picture representation (figure 3) and letter chart 
representation (figure 4), which enabled her to build on these ideas, to 
create her new chart (figure 6). These questions acted as a catalyst, which 
enabled her to build on her chart representation, which we believe, 
demonstrated some level of representational flexibility. In this case, Aiesha 
began to link her number sentence, picture representation and chart 
representation to justify her division by two. 
 
Aiesha’s representation on figure 6 is far from spontaneous. It resulted 
largely from interactions with the other students and the UR, and 
discussion about how handshakes were counted. Aiesha constructed the 
representation in figure 6 as a declarative statement that she knew how to 
calculate the number of handshakes, and why division by 2 was 
necessary. Her representation seems, in other words, to be a declaration 
of why something is true, not just that it is. In this sense, her 
representation seems to serve a different purpose than her first 
representation (figure 2). 

 



18 

3.4. An extension to the problem: A need for more symbolic 
representations 

In the following episode, which took place a few weeks into the 
investigation (4th session of working on this problem), Aiesha, in response 
to a series of questions posed by the UR (in the beginning of this session 
when her group prepared for their presentation) about whether or not the 
method would work in instances where there were there were 200 people, 
500 people, etc. ...and how they could be sure it would always work, 
repeated the question to the class focusing on a 500 people party. This 
extension to the problem, seemingly provided the motivation for Aiesha to 
move to a new representation, as well as a more sophisticated symbolic 
notation and generalizing.  
 

Aiesha: I wanted to know that, what if there was around say five 
hundred people at the party? Would you be able to do that same 
table with…? 
Brittney: It would take me like an hour to do it but I would do it. 
Aiesha: So, would you rather save time, than just keep doing that 
with five hundred people? 

 
By (re)posing and beginning to solve this hypothetical situation based on 
the existing problem, Aiesha seemingly motivated the class to explore the 
task more deeply. 
  
Aiesha began to solve the problem by explaining that for a 500 person 
party, she would have 500 letters across and 499 letters in each column. 
Then, she said she would cross out half of the letters on the chart. She 
never drew the entire table: rather she extended her previous method and 
multiplied 500 by 499 and divided the product by 2 (See fig. 7).  
 



19 

 
Figure 7. Linking representations. 

 
This is a critical point in Aiesha’s thinking and in her flexible use of 
representations. We can now see clearly that Aiesha’s more abstract 
representation of the problem solution allowed her to focus on a critical 
feature of her actions – producing 500 columns, 499 rows, and crossing 
out half the entries. But she did not carry out this sequence of actions – 
she only imagined the possibility of doing so—a rather critical point to 
note.  She did not need to actually do the calculation, only imagine how it 
could be done. Her representation, which demonstrated her declarative 
knowledge of the problem’s solution, became a tool for thinking about and 
thinking through. A critical point to notice is that Aiesha’s representation, 
which is by now thoroughly declarative and not simply a record of her work 
as she solved a problem, has become an object in itself. This object can 
be observed by her, and others, to have certain properties. The 
representation, therefore, becomes a cognitive tool to further assist a 
student’s thinking. The very existence of this cognitive tool - this flexible 
representation - resulted from a dynamic of questioning and answering 
that took place in the classroom. Without such a prior dynamic it is not at 
all clear that Aiesha would have spontaneously represented her solution 
process in such a flexible and potent form. 
 
After finding her solution, Aiesha and other members of her group 
attempted to generate a generalized symbolic representation that could 
work with any number of people. For this, they reverted to the original 
problem involving 28 handshakes. Aiesha drew a chart for an eight person 
party (see figure 7) and constructed a number sentence along with a 
formula using both words and standard algebraic notation. Originally, her 
symbolic notation entailed several errors involving the placement of 
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parentheses, but these were quickly corrected by the students 
themselves. Ultimately, she was able to come up with the formula 

. The process by which this occurred will be described below.
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3.5. Linking Representations 

We note that several questions, mostly from other students, prompted 
Aiesha to link representations. A student questioned Aiesha and in turn, 
Aiesha showed that her own idea was valid, using multiple representations 
to solve the problem.   

Aiesha: n equals the number of people at the party. What I did was 
n times, well, we’re going to do n times n minus one, n minus one in 
parentheses [tracing the parentheses with her marker]. First what 
we have to do, eight, there’s eight people, we have to take minus 
one, so there’s seven [writing 8-1 = 7]. So, n times n minus one, 
then you divide that by two. You would multiply eight by seven, then 
you would divide that whole answer by two. 

 
Shaniqua: [Shaniqua raised her hand during Aiesha’s presentation 
and Aiesha called on her to speak.] I disagree with something. She 
said that there was five hundred people at the party and each of 
those people shake hands with four hundred and ninety nine 
people’s hands [initially directing the comment to the UR]. That’s 
not true because if you do that, then you’re saying each person 
shook… [then directing the comment to Aiesha]. 

 
As Shaniqua questioned Aiesha’s idea, she decided to use a common 
heuristic—setting up a simpler problem: 
 

Shaniqua: … OK, lets say there is three people at the party… 
Aiesha: Yeah. 
 

Shaniqua provided a reason for thinking that this idea is invalid, by 
describing the strategy that produces double handshakes: 

 
Shaniqua: And you are saying that every one of these three people 
are shaking the same three people’s hands. They are shaking the 
same people’s hands. 
Aiesha: Do you want to see how that works with three people? 
Shaniqua: Yeah. 
Aiesha: What you do is, I’m going to take this three… 
Shaniqua: All right. 
 

Aiesha began to justify her idea with symbols: 
Aiesha: And I’m going to do this formula. So you have n times n 
minus two [writing n times (n-1) as she presented this to the class- 
see figure 7] over two. So, if you go to three people… 

 
Her choice of words was questioned and she corrected herself: 
 

Student: You said minus one. 
Aiesha: I mean minus one, divided by two.  
 

Now, she moved to an explanation using numbers: 
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Aiesha: So, if you go to three people, times two, it gives you six 
(writing 3x2=6). Two divided by six is three (writing 6/2=3). How 
many handshakes took place? It’s three [see figure 7]. 
 

A student questioned Aiesha and prompted her into linking 
representations – symbols, numbers, and words: 

Student: What’s the n? 
Aiesha: All right, the n equals the number of people, n, three 
people, right. What you have to do first is 3 minus one, it gives you 
two. Then you have to do three times two, and it gives you six. You 
divide two into six and it gives you three. That’s how many 
handshakes. 
Student: Oh. 
UR: What would the chart look like? 

 
Aiesha drew the chart for a three person party with three letters going 
across and two letters in each column on figure 7. She initially made a 
mistake by adding an extra letter in one column. She realized something 
was wrong during her explanation and reorganized her idea. She ended 
with the three by two chart on the right side of figure 7.  

 
UR: So you have a three by two? 
Aiesha: Yeah, I crossed off three of them, an A, an A and a B. It still 
gives you a remainder of three people, three handshakes.  
 

Another student questioned Aiesha, which prompted her to link the action 
of shaking hands to the chart representation: 

 
Dominique: Why do you use the number two to divide? 
Aiesha: All right, I use two because look, when two people (shaking 
Bianca’s hand), it gives you two handshakes (pointing to her and 
Bianca), but normally…. 
Student: One 
Student: Two handshakes? 
Edgar: One for each person. 
Aiesha: And normally it would be… 
UR: Lets say you were A and she was B, where would it be in the 
diagram? 
Bianca: B would shake A’s hand and A would shake B’s hand. 
UR: So, how many handshakes are there? 
Aiesha: One, two. 
UR: And in this problem do you want to count both of those 
handshakes? 
Aiesha: Well, not really, we want to count them, then we want to 
divide… 
UR: Where would they be in the diagram? 

 
She linked the action of Bianca and herself shaking hands to the chart: 

 
Aiesha: So, it’s me and Bianca and it’s A and S [drawing the chart 
on the bottom of figure 8]. A shakes that person’s hand [writing an S 
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under the A on figure 8], so then it’s like that [writing an A under the 
S]. But you don’t need that, so it’s like that [crossing out the A]. 
Student: I don’t get it. 
 

 
Figure 8. Linking more representations. 
 
Aiesha used her picture for an eleven person party and traced lines 
connecting two circles (see figure 3), writing a 2 above each line, to show 
that each line counts as two handshakes on her picture representation 
(circles and loops). In doing this, she linked the picture representation to 
the A & S chart and the action of shaking hands.   

 
Aiesha: Because, all right, these two people here are shaking 
hands, right [drawing a line connecting the first circle to the second 
circle on her picture representation, writing a 2 above it – see figure 
8] and that equals two handshakes. And those two shake hands 
[drawing a line connecting the second circle to the third circle, 
writing a two above it], that’s two handshakes. So, you’re going to 
keep on writing two, so you are going to divide by 2 because you 
don’t need that extra handshake [tracing the division symbol at the 
top of figure 8]. You only shake hands one time. 
U/R: On the chart over here (11 by 10 chart on figure 8), why did 
you cross off so many? 
Aiesha: They already shook hands with that person already. 
John: Is two people considered one handshake or two 
handshakes? 
Aiesha: I say it’s considered two handshakes, but after you divide 
by two it is one handshake.  

 
 



24 

We suggest that Aiesha’s representations of the handshake problem have 
now become very flexible. She was able to explain the division by 2 with 
her chart representation (crossing off half of the letters in her chart) and 
with her picture representation (drawing lines between the circles, writing a 
2 above each line and explaining that each line represents two 
handshakes, which represents one handshake repeated). She moved 
from a pictorial representation to calculation to algebraic reasoning with 
ease. She also demonstrated that she can deal with party situations with 
arbitrary numbers of people or handshakes, and is able to explain with 
fluency why it is that the product n(n-1) is divided by 2. Her ability to recall 
these representations and to use them flexibly is connected to her 
operating in the formalizing layer of the Pirie-Kieren model.  

3.6. Solving a Structurally Similar Task Six Months Later 

Six months later, Aiesha’s class was asked to investigate a task that was 
structurally similar to the handshake problem: Yakia’s slumber party (see 
Methods section above). 
 
Within a few minutes, Aiesha and her group members (which included 
Bianca and Shaniqua) utilized most of the representations (picture, chart, 
numbers, words and symbols) they constructed six months earlier, and 
also used another way to represent their generalization symbolically. 
Interestingly, many students in the class also used the formula Aiesha 
presented six months earlier for this new task - see figures 9 through 14, 
below. We believe that this provides evidence that these students had 
long-term memory of Aiesha’s formula.  
 

3.6.1. Aiesha’s Approach 

The first representation that Aiesha retrieved six months later was her 
picture representation using circles and loops (see figure 9). It appears 
that this picture representation helped her retrieve the symbolic notation, 
which she wrote immediately after drawing the circles and loops (see the 
top right hand corner of figure 9). 
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Figure 9. Aiesha reconstructed her original picture representation, then the symbolic 
notation 

 
What is different in this representation to her initial representation (figure 
2) is that now she has a formula with the picture, and a verbal explanation 
of her reasoning. This representation is not simply a record of working: it 
has become a declarative represented tool to explain her reasoning, as 
well as to display a general formula. As such it is a highly distilled and 
flexible representation. 
 
Next, Aiesha wrote the number sentence and elaborated on it by 
explaining how to solve it (figure 10).  
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Figure 10. Linking the symbolic notation to numbers and words 
 
Aiesha then set up a hypothetical situation (what if there were 5 girls?), 
and used her symbolic notation to express the generalization. Then she 
solved with her number sentence (figure 11). Notice that she drew a chart 
representation (similar to the one she constructed to explain her number 
sentence to her peers months earlier) last, most likely to explain the 
number sentence and symbolic notation to the other students when she 
later presented this to the class. Recall that she also set up a hypothetical 
situation months earlier, which provided her with a reason to imagine the 
chart at that time. Aiesha also stated that this is similar to the handshake 
problem. 



27 

 
Figure 11. Linking the chart to words and symbols & setting up a hypothetical situation 
 
Aiesha’s representations have now reached a high level of flexibility. They 
combine pictures, formulas, and elaborated sentences to describe what 
the pictures and formulas represent. 
 

3.6.2. Bianca’s retrieval six months later 

After reading this new problem six months later, Bianca, a member of 
Aiesha’s group, immediately retrieved the chart representation to solve the 
problem. This was the representation she was asked to explain in relation 
to the division by 2 as her group presented their general solution (figure 
12) six months earlier. Recall that she was the one who stood next to 
Aiesha as she presented the information captured in figure 7 above; she 
was the one who Aiesha shook hands with during the presentation and 
she was the one who helped Aiesha justify her symbolic notation with the 
chart and the action of shaking hands to address students’ (in the 
audience) questions.  
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Figure12. Bianca retrieving the chart representation first, then symbolic notation 

 
Bianca also solved Aiesha’s hypothetical situation (what if there were 5 
girls?) using the chart representation (see fig. 13), without the diagonal, 
which was the first thing Bianca retrieved in figure 12. This chart 
representation led to her retrieval of the number sentence that helped her 
solve the problem. It appears that for Bianca, the rectangular array without 
the diagonal is the representation that makes sense to her. It seems to be 
the representation she uses to solve the problem as opposed to Aiesha, 
who uses this representation as a tool for explaining to her peers. This 
makes sense because Bianca was actively involved in building on 
Aiesha’s chart when she and her group members realized that the people 
at the party would shake hands twice.  
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Figure 13. Bianca solved Aiesha’s hypothetical situation with a chart 

 

3.6.3. Dominique’s retrieval six months later (a student in the audience 
asking questions) 

 

 
 Figure 14. Student work from Dominique, one of the students who questioned their ideas 
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What is important to us is how, six months later, the students used these 
symbolic representations. A procedural use of the formula would result 
from simply plugging in numbers to a formula as a process carried out in 
action. An alternative would be that they use the formula as a recalled idea 
in a different setting, with enough similarities to the original setting in which 
the formula was first represented to stimulate recall of the idea. The 
students’ writing indicates clearly that they are not behaving simply 
procedurally – they are indicating, declaratively, that they have explicit 
interpretations of the recalled formula and that they can re-interpret the 
formula in this new setting. Thus, the formula has become a flexible 
representational cognitive tool that students can use in novel settings to 
solve problems, similar, but not identical, in structure, to those they have 
seen before. 
 
3.6.4. A view of several other students  
 
Most students in the classroom were able to solve the Yakia problem 
shortly after reading the problem. Several of them were only able to 
retrieve the number sentence. These students knew that they needed to 
multiply 15 by 14 and divide by 2, but could not explain why they were 
doing so. In these cases, the students did not draw a picture, chart or 
other representation to explain why their number sentence worked. One 
might infer that the students were operating procedurally, however the fact 
that they noticed the structural similarity between the two problems may 
suggest otherwise. Nonetheless, there is no evidence to suggest that they 
were not just simply plugging in numbers in a formula as a process carried 
out in action. Alternatively, it is also possible that at least some of these 
students had an image that would justify their solution but did not have an 
opportunity to share it publically. No matter the case, we do not have the 
data to support one conjecture or another with regards to these students.  

 

4. Conclusion 
This paper documents the evolution of what we describe as flexible 
mathematical thought, and representational flexibility, in several 
students—with an emphasis on one student, Aiesha. We note in particular 
several features of this evolution. First, when given the opportunity, 
students often ask interesting and compelling questions, many times 
without overt intervention by a teacher or other adult. These questions are 
most commonly asked in relation to another students’ work or reasoning, 
or in response to teacher questions about their own work, either 
immediately or delayed. 
 
Second, the questions that the students raise are often a catalyst for them 
and their peers to refine, explain and re-think their answers, and to 
construct new and, as Aiesha’s case reveals, more flexible 
representations to answer another student’s questions.  
 
Third, tinkering with representations seems to be the norm. Not 
surprisingly, students rarely construct new representations as if on a blank 
slate. Rather, they tinkered with and modified their own or other students’ 
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representations to meet a need to explain better and more fully. Aiesha’s 
evolving representations provide insight into this:  she not only developed 
more sophisticated and flexible representations, but in the process, she 
was able to use her peer’s work as a model to both help her and her peer 
understand the problem. 
 
Fourth, representations, flexible or otherwise, are not all of a single type. 
There are representations that are more or less records of working, 
representations that explain that something is so, and representations that 
explain why something is so. A student can produce a record of work – an 
inscription – as they work. This record does not necessarily constitute a 
form of declarative knowledge: it might simply be what they write as they 
work. When a student produces a representation to show working to solve 
a problem – as Aiesha did in her circles and loops representation of the 
handshake problem – it is our observation, in this case, that this first 
representation is the one that is consistently recalled in later similar 
problem settings. This seems to happen despite  the fact that she 
produced different and more elaborate or abstract representations in 
response to other student questions as the problem session proceeded.  
 
Fifth, students seem to use different types of representations flexibly as 
the need arises. So, even though a student might construct a 
sophisticated representation to answer why something works as it does, in 
a related context they might reconstruct a modification of a much simpler 
representation that shows how something is done. This might be 
explained by regression in the face of a new problem. We feel, however, 
that there is an element of retrieving a representation for a specific 
purpose: one is unlikely to retrieve a representation that explains why, 
when one is simply showing how. For example, Aiesha’s representation 
shown in figure 9 was a modification of her original representation, not of 
those she produced later, yet it was not a simple regression: she has 
elaborated on the original representation with formulas and words.  
 
What is it about the first representation that signals it to be first recalled to 
a student’s mind in a novel problem setting? Could it be that we are seeing 
differing forms of declarative knowledge? For instance, Aiesha’s circles 
and loops representation seems to be her declarative statement that she 
knew how to solve the problem. Her representation is an indication of a 
type of knowledge- knowledge that. When Aiesha was prompted to explain 
her answer, she produced a different representation. This representation 
seems to indicate a different form of knowledge – knowledge why. Just as 
knowledge how can be exhibited in the doing – carrying out a calculation, 
for example – knowledge that can be exhibited via a declarative 
representation, and knowledge why via a different representation. When 
Aiesha tackled the variant of the handshake problem – the party problem – 
she was not, initially, prompted to explain why, so her recall was that she 
could solve the problem. Is it possible that we are seeing the functioning of 
differing memory systems in students’ use of representations? 
 
We have seen how these flexible representations, discussed vigorously by 
students in class, and examined by them for gaps or flaws in reasoning, 
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can become embedded as long-term declarative memories to be used 
flexibly in related yet novel problem settings. It is these experiences with 
students that lead us to believe that such classroom debate can be an 
important catalyst in the development of more flexible representations, and 
a motive force behind the development of understanding. 
 
What we do not know, from this study is what students would have done if 
they had been presented with a new task that was superficially similar to 
the previous one but mathematically not isomorphic and, therefore, 
requiring a different type of solution. In other words what would happen 
with mathematically different problems with the same surface story 
context? This is an issue that would round out the other half of our story 
on flexibility. 
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